Expand description
§Core functionality
The Core module is the backbone of OpenCV, offering fundamental data structures, matrix operations, and utility functions that other modules depend on. It’s essential for handling image data, performing mathematical computations, and managing memory efficiently within the OpenCV ecosystem.
§Basic structures
§Operations on arrays
§Asynchronous API
§XML/YAML/JSON Persistence
§Clustering
§Utility and system functions and macros
§OpenGL interoperability
§Optimization Algorithms
§DirectX interoperability
§Eigen support
§OpenCL support
§Intel VA-API/OpenCL (CL-VA) interoperability
§Hardware Acceleration Layer
§Parallel Processing
§Quaternion
Modules§
Structs§
- Affine3
- docs.opencv.org
- Algorithm
- This is a base class for all more or less complex algorithms in OpenCV
- Arrays
- Wrapper for OpenGL Client-Side Vertex arrays.
- Async
Array - Returns result of asynchronous operations
- Async
Promise - Provides result of asynchronous operations
- Buffer
- Smart pointer for OpenGL buffer object with reference counting.
- Buffer
Pool - BufferPool for use with CUDA streams
- Class
With Keyword Properties - Command
Line Parser - Designed for command line parsing
- Conj
Grad Solver - This class is used to perform the non-linear non-constrained minimization of a function with known gradient,
- Context
- Context_
User Context - DMatch
- Class for matching keypoint descriptors
- Detail_
Check Context - Device
- Device
Info - Class providing functionality for querying the specified GPU properties.
- Downhill
Solver - This class is used to perform the non-linear non-constrained minimization of a function,
- Event
- Exception
- ! Class passed to an error.
- File
Node - File Storage Node class.
- File
Node Iterator - used to iterate through sequences and mappings.
- File
Storage - XML/YAML/JSON file storage class that encapsulates all the information necessary for writing or reading data to/from a file.
- Formatted
- @todo document
- Formatter
- @todo document
- Function
Params - GpuData
- GpuMat
- Base storage class for GPU memory with reference counting.
- GpuMatND
- GpuMat_
Allocator - Hamming
- HostMem
- Class with reference counting wrapping special memory type allocation functions from CUDA.
- Image2D
- Kernel
- Kernel
Arg - KeyPoint
- Data structure for salient point detectors.
- LDA
- Linear Discriminant Analysis @todo document this class
- LogTag
- Mat
- n-dimensional dense array class \anchor CVMat_Details
- MatConst
Iterator - /////////////////////////////// MatConstIterator //////////////////////////////////
- MatExpr
- Matrix expression representation @anchor MatrixExpressions This is a list of implemented matrix operations that can be combined in arbitrary complex expressions (here A, B stand for matrices ( Mat ), s for a scalar ( Scalar ), alpha for a real-valued scalar ( double )):
- MatIter
- MatIter
Mut - MatOp
- ////////////////////////////// Matrix Expressions /////////////////////////////////
- MatSize
- MatStep
- Mat_
- docs.opencv.org
- Matx
- docs.opencv.org
- Matx_
AddOp - @cond IGNORED
- Matx_
DivOp - Matx_
MatMul Op - Matx_
MulOp - Matx_
Scale Op - Matx_
SubOp - Matx_
TOp - MinProblem
Solver - Basic interface for all solvers
- MinProblem
Solver_ Function - Represents function being optimized
- Moments
- struct returned by cv::moments
- Node
Data - OpenCL
Execution Context - Original
Class Name - Original
Class Name_ Params - PCA
- Principal Component Analysis
- Parallel
Loop Body - Base class for parallel data processors
- Platform
- @deprecated
- Platform
Info - Point3_
- docs.opencv.org
- Point_
- docs.opencv.org
- Program
- Program
Source - Ptr
- This is similar to Rust
Arc
, but handled by the C++. Some OpenCV functions insist on acceptingPtr
instead of a heap allocated object, so we need to satisfy those. - Queue
- RNG
- Random Number Generator
- RNG_
MT19937 - Mersenne Twister random number generator
- Range
- Template class specifying a continuous subsequence (slice) of a sequence.
- Rect_
- docs.opencv.org
- Rotated
Rect - The class represents rotated (i.e. not up-right) rectangles on a plane.
- SVD
- Singular Value Decomposition
- Size_
- docs.opencv.org
- Sized
Array12 - Sized
Array13 - Sized
Array14 - Sized
Array16 - Sized
Array21 - Sized
Array22 - Sized
Array23 - Sized
Array31 - Sized
Array32 - Sized
Array33 - Sized
Array34 - Sized
Array41 - Sized
Array43 - Sized
Array44 - Sized
Array61 - Sized
Array66 - Sparse
Mat - The class SparseMat represents multi-dimensional sparse numerical arrays.
- Sparse
MatConst Iterator - Read-Only Sparse Matrix Iterator.
- Sparse
MatIterator - Read-write Sparse Matrix Iterator
- Sparse
Mat_ Hdr - the sparse matrix header
- Sparse
Mat_ Node - sparse matrix node - element of a hash table
- Stream
- This class encapsulates a queue of asynchronous calls.
- Target
Archs - Class providing a set of static methods to check what NVIDIA* card architecture the CUDA module was built for.
- Term
Criteria - The class defining termination criteria for iterative algorithms.
- Texture2D
- Smart pointer for OpenGL 2D texture memory with reference counting.
- Tick
Meter - a Class to measure passing time.
- Timer
- Tuple
- Wrapper for C++ std::tupe and std::pair
- UMat
- @todo document
- UMat
Data - VecN
- docs.opencv.org
Named
VecN
to avoid name clash with std’sVec
. - Vector
- Wrapper for C++ std::vector
- Vector
Iterator - Vector
RefIterator - Write
Struct Context - _Input
Array - This is the proxy class for passing read-only input arrays into OpenCV functions.
- _Input
Output Array - _Output
Array - This type is very similar to InputArray except that it is used for input/output and output function parameters.
- hfloat
Enums§
- Access
Flag - Algorithm
Hint - ! Flags that allow to midify some functions behavior. Used as set of flags.
- Border
Types - Various border types, image boundaries are denoted with
|
- Buffer_
Access - Buffer_
Target - The target defines how you intend to use the buffer object.
- CmpTypes
- comparison types
- Code
- error codes
- Covar
Flags - Covariation flags
- CpuFeatures
- Available CPU features.
- Decomp
Types - matrix decomposition types
- Detail_
Test Op - Device
Info_ Compute Mode - DftFlags
- Event_
Create Flags - FLAGS
- Feature
Set - Enumeration providing CUDA computing features.
- File
Storage_ Mode - file storage mode
- File
Storage_ State - Formatter_
Format Type - Gemm
Flags - generalized matrix multiplication flags
- Host
Mem_ Alloc Type - IMPL
- Kmeans
Flags - k-means flags
- LogLevel
- Supported logging levels and their semantic
- MatExpr
Result - Intermediate result type that’s produced by the Mat operations. Call MatExprResult::into_result to get the regular Result.
- Norm
Types - norm types
- OclVector
Strategy - PCA_
Flags - Param
- Reduce
Types - Render
Modes - render mode
- Rotate
Flags - SVD_
Flags - SolveLP
Result - return codes for cv::solveLP() function
- Sort
Flags - TYPE
- Term
Criteria_ Type - Criteria type, can be one of: COUNT, EPS or COUNT + EPS
- Texture2D_
Format - An Image Format describes the way that the images in Textures store their data.
- UMat
Data_ Memory Flag - UMat
Usage Flags - Usage flags for allocator
- _Input
Array_ Kind Flag - _Output
Array_ Depth Mask
Constants§
- ACCESS_
FAST - ACCESS_
MASK - ACCESS_
READ - ACCESS_
RW - ACCESS_
WRITE - ALGO_
HINT_ ACCURATE - Use generic portable implementation
- ALGO_
HINT_ APPROX - Allow alternative approximations to get faster implementation. Behaviour and result depends on a platform
- ALGO_
HINT_ DEFAULT - Default algorithm behaviour defined during OpenCV build
- BORDER_
CONSTANT iiiiii|abcdefgh|iiiiiii
with some specifiedi
- BORDER_
DEFAULT - same as BORDER_REFLECT_101
- BORDER_
ISOLATED - Interpolation restricted within the ROI boundaries.
- BORDER_
REFLECT fedcba|abcdefgh|hgfedcb
- BORDER_
REFLEC T101 - same as BORDER_REFLECT_101
- BORDER_
REFLECT_ 101 gfedcb|abcdefgh|gfedcba
- BORDER_
REPLICATE aaaaaa|abcdefgh|hhhhhhh
- BORDER_
TRANSPARENT uvwxyz|abcdefgh|ijklmno
- Treats outliers as transparent.- BORDER_
WRAP cdefgh|abcdefgh|abcdefg
- BadAlign
- incorrect input align
- BadAlpha
Channel - BadCOI
- input COI is not supported
- BadCall
Back - BadData
Ptr - BadDepth
- input image depth is not supported by the function
- BadImage
Size - image size is invalid
- BadModel
OrCh Seq - BadNum
Channel1U - BadNum
Channels - bad number of channels, for example, some functions accept only single channel matrices.
- BadOffset
- offset is invalid
- BadOrder
- number of dimensions is out of range
- BadOrigin
- incorrect input origin
- BadROI
Size - incorrect input roi
- BadStep
- image step is wrong, this may happen for a non-continuous matrix.
- BadTile
Size - Buffer_
ARRAY_ BUFFER - The buffer will be used as a source for vertex data
- Buffer_
ELEMENT_ ARRAY_ BUFFER - The buffer will be used for indices (in glDrawElements, for example)
- Buffer_
PIXEL_ PACK_ BUFFER - The buffer will be used for reading from OpenGL textures
- Buffer_
PIXEL_ UNPACK_ BUFFER - The buffer will be used for writing to OpenGL textures
- Buffer_
READ_ ONLY - Buffer_
READ_ WRITE - Buffer_
WRITE_ ONLY - CMP_EQ
- src1 is equal to src2.
- CMP_GE
- src1 is greater than or equal to src2.
- CMP_GT
- src1 is greater than src2.
- CMP_LE
- src1 is less than or equal to src2.
- CMP_LT
- src1 is less than src2.
- CMP_NE
- src1 is unequal to src2.
- COVAR_
COLS - If the flag is specified, all the input vectors are stored as columns of the samples matrix. mean should be a single-column vector in this case.
- COVAR_
NORMAL - The output covariance matrix is calculated as: block formula covar will be a square matrix of the same size as the total number of elements in each input vector. One and only one of COVAR_SCRAMBLED and COVAR_NORMAL must be specified.
- COVAR_
ROWS - If the flag is specified, all the input vectors are stored as rows of the samples matrix. mean should be a single-row vector in this case.
- COVAR_
SCALE - If the flag is specified, the covariance matrix is scaled. In the “normal” mode, scale is 1./nsamples . In the “scrambled” mode, scale is the reciprocal of the total number of elements in each input vector. By default (if the flag is not specified), the covariance matrix is not scaled ( scale=1 ).
- COVAR_
SCRAMBLED - The output covariance matrix is calculated as: block formula The covariance matrix will be nsamples x nsamples. Such an unusual covariance matrix is used for fast PCA of a set of very large vectors (see, for example, the EigenFaces technique for face recognition). Eigenvalues of this “scrambled” matrix match the eigenvalues of the true covariance matrix. The “true” eigenvectors can be easily calculated from the eigenvectors of the “scrambled” covariance matrix.
- COVAR_
USE_ AVG - If the flag is specified, the function does not calculate mean from the input vectors but, instead, uses the passed mean vector. This is useful if mean has been pre-calculated or known in advance, or if the covariance matrix is calculated by parts. In this case, mean is not a mean vector of the input sub-set of vectors but rather the mean vector of the whole set.
- CPU_AVX
- CPU_
AVX2 - CPU_
AVX512_ CLX - Cascade Lake with AVX-512F/CD/BW/DQ/VL/VNNI
- CPU_
AVX512_ CNL - Cannon Lake with AVX-512F/CD/BW/DQ/VL/IFMA/VBMI
- CPU_
AVX512_ COMMON - Common instructions AVX-512F/CD for all CPUs that support AVX-512
- CPU_
AVX512_ ICL - Ice Lake with AVX-512F/CD/BW/DQ/VL/IFMA/VBMI/VNNI/VBMI2/BITALG/VPOPCNTDQ
- CPU_
AVX512_ KNL - Knights Landing with AVX-512F/CD/ER/PF
- CPU_
AVX512_ KNM - Knights Mill with AVX-512F/CD/ER/PF/4FMAPS/4VNNIW/VPOPCNTDQ
- CPU_
AVX512_ SKX - Skylake-X with AVX-512F/CD/BW/DQ/VL
- CPU_
AVX_ 512BITALG - CPU_
AVX_ 512BW - CPU_
AVX_ 512CD - CPU_
AVX_ 512DQ - CPU_
AVX_ 512ER - CPU_
AVX_ 512F - CPU_
AVX_ 512IFMA - CPU_
AVX_ 512IFM A512 - CPU_
AVX_ 512PF - CPU_
AVX_ 512VBMI - CPU_
AVX_ 512VBM I2 - CPU_
AVX_ 512VL - CPU_
AVX_ 512VNNI - CPU_
AVX_ 512VPOPCNTDQ - CPU_
AVX_ 5124FMAPS - CPU_
AVX_ 5124VNNIW - CPU_
FMA3 - CPU_
FP16 - CPU_
LASX - CPU_LSX
- CPU_
MAX_ FEATURE - CPU_MMX
- CPU_MSA
- CPU_
NEON - CPU_
NEON_ BF16 - CPU_
NEON_ DOTPROD - CPU_
NEON_ FP16 - CPU_
POPCNT - CPU_
RISCVV - CPU_RVV
- CPU_SSE
- CPU_
SSE2 - CPU_
SSE3 - CPU_
SSE4_ 1 - CPU_
SSE4_ 2 - CPU_
SSSE3 - CPU_VSX
- CPU_
VSX3 - CV_2PI
- CV_8S
- CV_8SC1
- CV_8SC2
- CV_8SC3
- CV_8SC4
- CV_8U
- CV_8UC1
- CV_8UC2
- CV_8UC3
- CV_8UC4
- CV_16F
- CV_
16FC1 - CV_
16FC2 - CV_
16FC3 - CV_
16FC4 - CV_16S
- CV_
16SC1 - CV_
16SC2 - CV_
16SC3 - CV_
16SC4 - CV_16U
- CV_
16UC1 - CV_
16UC2 - CV_
16UC3 - CV_
16UC4 - CV_32F
- CV_
32FC1 - CV_
32FC2 - CV_
32FC3 - CV_
32FC4 - CV_32S
- CV_
32SC1 - CV_
32SC2 - CV_
32SC3 - CV_
32SC4 - CV_64F
- CV_
64FC1 - CV_
64FC2 - CV_
64FC3 - CV_
64FC4 - CV_AVX
- CV_AVX2
- CV_
AVX512_ CLX - CV_
AVX512_ CNL - CV_
AVX512_ COMMON - CV_
AVX512_ ICL - CV_
AVX512_ KNL - CV_
AVX512_ KNM - CV_
AVX512_ SKX - CV_
AVX_ 512BITALG - CV_
AVX_ 512BW - CV_
AVX_ 512CD - CV_
AVX_ 512DQ - CV_
AVX_ 512ER - CV_
AVX_ 512F - CV_
AVX_ 512IFMA - CV_
AVX_ 512IFM A512 - CV_
AVX_ 512PF - CV_
AVX_ 512VBMI - CV_
AVX_ 512VBM I2 - CV_
AVX_ 512VL - CV_
AVX_ 512VNNI - CV_
AVX_ 512VPOPCNTDQ - CV_
AVX_ 5124FMAPS - CV_
AVX_ 5124VNNIW - CV_
CN_ MAX - CV_
CN_ SHIFT - CV_
CPU_ AVX - CV_
CPU_ AVX2 - CV_
CPU_ AVX512_ CLX - CV_
CPU_ AVX512_ CNL - CV_
CPU_ AVX512_ COMMON - CV_
CPU_ AVX512_ ICL - CV_
CPU_ AVX512_ KNL - CV_
CPU_ AVX512_ KNM - CV_
CPU_ AVX512_ SKX - CV_
CPU_ AVX_ 512BITALG - CV_
CPU_ AVX_ 512BW - CV_
CPU_ AVX_ 512CD - CV_
CPU_ AVX_ 512DQ - CV_
CPU_ AVX_ 512ER - CV_
CPU_ AVX_ 512F - CV_
CPU_ AVX_ 512IFMA - CV_
CPU_ AVX_ 512IFM A512 - CV_
CPU_ AVX_ 512PF - CV_
CPU_ AVX_ 512VBMI - CV_
CPU_ AVX_ 512VBM I2 - CV_
CPU_ AVX_ 512VL - CV_
CPU_ AVX_ 512VNNI - CV_
CPU_ AVX_ 512VPOPCNTDQ - CV_
CPU_ AVX_ 5124FMAPS - CV_
CPU_ AVX_ 5124VNNIW - CV_
CPU_ FMA3 - CV_
CPU_ FP16 - CV_
CPU_ LASX - CV_
CPU_ LSX - CV_
CPU_ MMX - CV_
CPU_ MSA - CV_
CPU_ NEON - CV_
CPU_ NEON_ BF16 - CV_
CPU_ NEON_ DOTPROD - CV_
CPU_ NEON_ FP16 - CV_
CPU_ NONE - CV_
CPU_ POPCNT - CV_
CPU_ RISCVV - CV_
CPU_ RVV - CV_
CPU_ SSE - CV_
CPU_ SSE2 - CV_
CPU_ SSE3 - CV_
CPU_ SSE4_ 1 - CV_
CPU_ SSE4_ 2 - CV_
CPU_ SSSE3 - CV_
CPU_ VSX - CV_
CPU_ VSX3 - CV_
CXX11 - CV_
DEPTH_ MAX - CV_
ENABLE_ UNROLLED - CV_FMA3
- CV_FP16
- CV_
FP16_ TYPE - CV_
HAL_ BORDER_ CONSTANT - CV_
HAL_ BORDER_ ISOLATED - CV_
HAL_ BORDER_ REFLECT - CV_
HAL_ BORDER_ REFLECT_ 101 - CV_
HAL_ BORDER_ REPLICATE - CV_
HAL_ BORDER_ TRANSPARENT - CV_
HAL_ BORDER_ WRAP - CV_
HAL_ CMP_ EQ - CV_
HAL_ CMP_ GE - CV_
HAL_ CMP_ GT - CV_
HAL_ CMP_ LE - CV_
HAL_ CMP_ LT - CV_
HAL_ CMP_ NE - CV_
HAL_ DFT_ COMPLEX_ OUTPUT - CV_
HAL_ DFT_ INVERSE - CV_
HAL_ DFT_ IS_ CONTINUOUS - CV_
HAL_ DFT_ IS_ INPLACE - CV_
HAL_ DFT_ REAL_ OUTPUT - CV_
HAL_ DFT_ ROWS - CV_
HAL_ DFT_ SCALE - CV_
HAL_ DFT_ STAGE_ COLS - CV_
HAL_ DFT_ TWO_ STAGE - CV_
HAL_ ERROR_ NOT_ IMPLEMENTED - CV_
HAL_ ERROR_ OK - CV_
HAL_ ERROR_ UNKNOWN - CV_
HAL_ GEMM_ 1_ T - CV_
HAL_ GEMM_ 2_ T - CV_
HAL_ GEMM_ 3_ T - CV_
HAL_ SVD_ FULL_ UV - CV_
HAL_ SVD_ MODIFY_ A - CV_
HAL_ SVD_ NO_ UV - CV_
HAL_ SVD_ SHORT_ UV - CV_
HARDWARE_ MAX_ FEATURE - CV_
IMPL_ IPP - CV_
IMPL_ MT - CV_
IMPL_ OCL - CV_
IMPL_ PLAIN - CV_LASX
- CV_LOG2
- CV_
LOG_ LEVEL_ DEBUG - CV_
LOG_ LEVEL_ ERROR - CV_
LOG_ LEVEL_ FATAL - CV_
LOG_ LEVEL_ INFO - CV_
LOG_ LEVEL_ SILENT - CV_
LOG_ LEVEL_ VERBOSE - CV_
LOG_ LEVEL_ WARN - CV_
LOG_ STRIP_ LEVEL - CV_LSX
- CV_
MAJOR_ VERSION - CV_
MAT_ CN_ MASK - CV_
MAT_ CONT_ FLAG - CV_
MAT_ CONT_ FLAG_ SHIFT - CV_
MAT_ DEPTH_ MASK - CV_
MAT_ TYPE_ MASK - CV_
MAX_ DIM - CV_
MINOR_ VERSION - CV_MMX
- CV_MSA
- CV_NEON
- CV_PI
- CV_
POPCNT - CV_RVV
- CV_
RVV071 - CV_SSE
- CV_SSE2
- CV_SSE3
- CV_
SSE4_ 1 - CV_
SSE4_ 2 - CV_
SSSE3 - CV_
STRONG_ ALIGNMENT - CV_
SUBMAT_ FLAG - CV_
SUBMAT_ FLAG_ SHIFT - CV_
SUBMINOR_ VERSION - CV_
VERSION - CV_
VERSION_ MAJOR - CV_
VERSION_ MINOR - CV_
VERSION_ REVISION - CV_
VERSION_ STATUS - CV_VSX
- CV_VSX3
- CV_
WASM_ SIMD - CV__
EXCEPTION_ PTR - DCT_
INVERSE - performs an inverse 1D or 2D transform instead of the default forward transform.
- DCT_
ROWS - performs a forward or inverse transform of every individual row of the input matrix. This flag enables you to transform multiple vectors simultaneously and can be used to decrease the overhead (which is sometimes several times larger than the processing itself) to perform 3D and higher-dimensional transforms and so forth.
- DECOMP_
CHOLESKY - Cholesky inline formula factorization; the matrix src1 must be symmetrical and positively defined
- DECOMP_
EIG - eigenvalue decomposition; the matrix src1 must be symmetrical
- DECOMP_
LU - Gaussian elimination with the optimal pivot element chosen.
- DECOMP_
NORMAL - while all the previous flags are mutually exclusive, this flag can be used together with any of the previous; it means that the normal equations inline formula are solved instead of the original system inline formula
- DECOMP_
QR - QR factorization; the system can be over-defined and/or the matrix src1 can be singular
- DECOMP_
SVD - singular value decomposition (SVD) method; the system can be over-defined and/or the matrix src1 can be singular
- DFT_
COMPLEX_ INPUT - specifies that input is complex input. If this flag is set, the input must have 2 channels. On the other hand, for backwards compatibility reason, if input has 2 channels, input is already considered complex.
- DFT_
COMPLEX_ OUTPUT - performs a forward transformation of 1D or 2D real array; the result, though being a complex array, has complex-conjugate symmetry (CCS, see the function description below for details), and such an array can be packed into a real array of the same size as input, which is the fastest option and which is what the function does by default; however, you may wish to get a full complex array (for simpler spectrum analysis, and so on) - pass the flag to enable the function to produce a full-size complex output array.
- DFT_
INVERSE - performs an inverse 1D or 2D transform instead of the default forward transform.
- DFT_
REAL_ OUTPUT - performs an inverse transformation of a 1D or 2D complex array; the result is normally a complex array of the same size, however, if the input array has conjugate-complex symmetry (for example, it is a result of forward transformation with DFT_COMPLEX_OUTPUT flag), the output is a real array; while the function itself does not check whether the input is symmetrical or not, you can pass the flag and then the function will assume the symmetry and produce the real output array (note that when the input is packed into a real array and inverse transformation is executed, the function treats the input as a packed complex-conjugate symmetrical array, and the output will also be a real array).
- DFT_
ROWS - performs a forward or inverse transform of every individual row of the input matrix; this flag enables you to transform multiple vectors simultaneously and can be used to decrease the overhead (which is sometimes several times larger than the processing itself) to perform 3D and higher-dimensional transformations and so forth.
- DFT_
SCALE - scales the result: divide it by the number of array elements. Normally, it is combined with DFT_INVERSE.
- DYNAMIC_
PARALLELISM - Detail_
CV__ LAST_ TEST_ OP - Detail_
TEST_ CUSTOM - Detail_
TEST_ EQ - Detail_
TEST_ GE - Detail_
TEST_ GT - Detail_
TEST_ LE - Detail_
TEST_ LT - Detail_
TEST_ NE - Device
Info_ Compute Mode Default - < default compute mode (Multiple threads can use cudaSetDevice with this device)
- Device
Info_ Compute Mode Exclusive - < compute-exclusive-thread mode (Only one thread in one process will be able to use cudaSetDevice with this device)
- Device
Info_ Compute Mode Exclusive Process - < compute-exclusive-process mode (Many threads in one process will be able to use cudaSetDevice with this device)
- Device
Info_ Compute Mode Prohibited - < compute-prohibited mode (No threads can use cudaSetDevice with this device)
- Device_
EXEC_ KERNEL - Device_
EXEC_ NATIVE_ KERNEL - Device_
FP_ CORRECTLY_ ROUNDED_ DIVIDE_ SQRT - Device_
FP_ DENORM - Device_
FP_ FMA - Device_
FP_ INF_ NAN - Device_
FP_ ROUND_ TO_ INF - Device_
FP_ ROUND_ TO_ NEAREST - Device_
FP_ ROUND_ TO_ ZERO - Device_
FP_ SOFT_ FLOAT - Device_
LOCAL_ IS_ GLOBAL - Device_
LOCAL_ IS_ LOCAL - Device_
NO_ CACHE - Device_
NO_ LOCAL_ MEM - Device_
READ_ ONLY_ CACHE - Device_
READ_ WRITE_ CACHE - Device_
TYPE_ ACCELERATOR - Device_
TYPE_ ALL - Device_
TYPE_ CPU - Device_
TYPE_ DEFAULT - Device_
TYPE_ DGPU - Device_
TYPE_ GPU - Device_
TYPE_ IGPU - Device_
UNKNOWN_ VENDOR - Device_
VENDOR_ AMD - Device_
VENDOR_ INTEL - Device_
VENDOR_ NVIDIA - ENUM_
LOG_ LEVEL_ FORCE_ INT - Event_
BLOCKING_ SYNC - < Event uses blocking synchronization
- Event_
DEFAULT - < Default event flag
- Event_
DISABLE_ TIMING - < Event will not record timing data
- Event_
INTERPROCESS - < Event is suitable for interprocess use. DisableTiming must be set
- FEATURE_
SET_ COMPUTE_ 10 - FEATURE_
SET_ COMPUTE_ 11 - FEATURE_
SET_ COMPUTE_ 12 - FEATURE_
SET_ COMPUTE_ 13 - FEATURE_
SET_ COMPUTE_ 20 - FEATURE_
SET_ COMPUTE_ 21 - FEATURE_
SET_ COMPUTE_ 30 - FEATURE_
SET_ COMPUTE_ 32 - FEATURE_
SET_ COMPUTE_ 35 - FEATURE_
SET_ COMPUTE_ 50 - FLAGS_
EXPAND_ SAME_ NAMES - FLAGS_
MAPPING - FLAGS_
NONE - File
Node_ EMPTY - empty structure (sequence or mapping)
- File
Node_ FLOAT - synonym or REAL
- File
Node_ FLOW - compact representation of a sequence or mapping. Used only by YAML writer
- File
Node_ INT - an integer
- File
Node_ MAP - mapping
- File
Node_ NAMED - the node has a name (i.e. it is element of a mapping).
- File
Node_ NONE - empty node
- File
Node_ REAL - floating-point number
- File
Node_ SEQ - sequence
- File
Node_ STR - text string in UTF-8 encoding
- File
Node_ STRING - synonym for STR
- File
Node_ TYPE_ MASK - File
Node_ UNIFORM - if set, means that all the collection elements are numbers of the same type (real’s or int’s). UNIFORM is used only when reading FileStorage; FLOW is used only when writing. So they share the same bit
- File
Storage_ APPEND - value, open the file for appending
- File
Storage_ BASE64 - flag, write rawdata in Base64 by default. (consider using WRITE_BASE64)
- File
Storage_ FORMAT_ AUTO - flag, auto format
- File
Storage_ FORMAT_ JSON - flag, JSON format
- File
Storage_ FORMAT_ MASK - mask for format flags
- File
Storage_ FORMAT_ XML - flag, XML format
- File
Storage_ FORMAT_ YAML - flag, YAML format
- File
Storage_ INSIDE_ MAP - Indicates being inside a map (a set of key-value pairs).
- File
Storage_ MEMORY - < flag, read data from source or write data to the internal buffer (which is returned by FileStorage::release)
- File
Storage_ NAME_ EXPECTED - Expecting a key/name in the current position.
- File
Storage_ READ - value, open the file for reading
- File
Storage_ UNDEFINED - Initial or uninitialized state.
- File
Storage_ VALUE_ EXPECTED - Expecting a value in the current position.
- File
Storage_ WRITE - value, open the file for writing
- File
Storage_ WRITE_ BASE64 - flag, enable both WRITE and BASE64
- Formatter_
FMT_ C - Formatter_
FMT_ CSV - Formatter_
FMT_ DEFAULT - Formatter_
FMT_ MATLAB - Formatter_
FMT_ NUMPY - Formatter_
FMT_ PYTHON - GEMM_
1_ T - transposes src1
- GEMM_
2_ T - transposes src2
- GEMM_
3_ T - transposes src3
- GLOBAL_
ATOMICS - GpuApi
Call Error - GPU API call error
- GpuNot
Supported - no CUDA support
- Header
IsNull - image header is NULL
- Host
Mem_ PAGE_ LOCKED - Host
Mem_ SHARED - Host
Mem_ WRITE_ COMBINED - IMPL_
IPP - IMPL_
OPENCL - IMPL_
PLAIN - KMEANS_
PP_ CENTERS - Use kmeans++ center initialization by Arthur and Vassilvitskii [Arthur2007].
- KMEANS_
RANDOM_ CENTERS - Select random initial centers in each attempt.
- KMEANS_
USE_ INITIAL_ LABELS - During the first (and possibly the only) attempt, use the user-supplied labels instead of computing them from the initial centers. For the second and further attempts, use the random or semi-random centers. Use one of KMEANS_*_CENTERS flag to specify the exact method.
- Kernel
Arg_ CONSTANT - Kernel
Arg_ LOCAL - Kernel
Arg_ NO_ SIZE - Kernel
Arg_ PTR_ ONLY - Kernel
Arg_ READ_ ONLY - Kernel
Arg_ READ_ WRITE - Kernel
Arg_ WRITE_ ONLY - LINES
- LINE_
LOOP - LINE_
STRIP - LOG_
LEVEL_ DEBUG - Debug message. Disabled in the “Release” build.
- LOG_
LEVEL_ ERROR - Error message
- LOG_
LEVEL_ FATAL - Fatal (critical) error (unrecoverable internal error)
- LOG_
LEVEL_ INFO - Info message
- LOG_
LEVEL_ SILENT - for using in setLogVevel() call
- LOG_
LEVEL_ VERBOSE - Verbose (trace) messages. Requires verbosity level. Disabled in the “Release” build.
- LOG_
LEVEL_ WARNING - Warning message
- Mask
IsTiled - Mat_
AUTO_ STEP - Mat_
CONTINUOUS_ FLAG - Mat_
DEPTH_ MASK - Mat_
MAGIC_ MASK - Mat_
MAGIC_ VAL - Mat_
SUBMATRIX_ FLAG - Mat_
TYPE_ MASK - NATIVE_
DOUBLE - NORM_
HAMMING - In the case of one input array, calculates the Hamming distance of the array from zero, In the case of two input arrays, calculates the Hamming distance between the arrays.
- NORM_
HAMMIN G2 - Similar to NORM_HAMMING, but in the calculation, each two bits of the input sequence will be added and treated as a single bit to be used in the same calculation as NORM_HAMMING.
- NORM_
INF - block formula
- NORM_L1
- block formula
- NORM_L2
- block formula
- NORM_
L2SQR - block formula
- NORM_
MINMAX - flag
- NORM_
RELATIVE - flag
- NORM_
TYPE_ MASK - bit-mask which can be used to separate norm type from norm flags
- OCL_
VECTOR_ DEFAULT - OCL_
VECTOR_ MAX - OCL_
VECTOR_ OWN - OPENCV_
ABI_ COMPATIBILITY - OPENCV_
USE_ FASTMATH_ BUILTINS - OpenCL
ApiCall Error - OpenCL API call error
- OpenCL
Double NotSupported - OpenCL
Init Error - OpenCL initialization error
- OpenCL
NoAMD Blas Fft - Open
GlApi Call Error - OpenGL API call error
- Open
GlNot Supported - no OpenGL support
- PCA_
DATA_ AS_ COL - indicates that the input samples are stored as matrix columns
- PCA_
DATA_ AS_ ROW - indicates that the input samples are stored as matrix rows
- PCA_
USE_ AVG - POINTS
- POLYGON
- Param_
ALGORITHM - Param_
BOOLEAN - Param_
FLOAT - Param_
INT - Param_
MAT - Param_
MAT_ VECTOR - Param_
REAL - Param_
SCALAR - Param_
STRING - Param_
UCHAR - Param_
UINT64 - Param_
UNSIGNED_ INT - QUADS
- QUAD_
STRIP - REDUCE_
AVG - the output is the mean vector of all rows/columns of the matrix.
- REDUCE_
MAX - the output is the maximum (column/row-wise) of all rows/columns of the matrix.
- REDUCE_
MIN - the output is the minimum (column/row-wise) of all rows/columns of the matrix.
- REDUCE_
SUM - the output is the sum of all rows/columns of the matrix.
- REDUCE_
SUM2 - the output is the sum of all squared rows/columns of the matrix.
- RNG_
NORMAL - RNG_
UNIFORM - ROTATE_
90_ CLOCKWISE - Rotate 90 degrees clockwise
- ROTATE_
90_ COUNTERCLOCKWISE - Rotate 270 degrees clockwise
- ROTATE_
180 - Rotate 180 degrees clockwise
- SHARED_
ATOMICS - SOLVELP_
LOST - problem is feasible, but solver lost solution due to floating-point arithmetic errors
- SOLVELP_
MULTI - there are multiple maxima for target function - the arbitrary one is returned
- SOLVELP_
SINGLE - there is only one maximum for target function
- SOLVELP_
UNBOUNDED - problem is unbounded (target function can achieve arbitrary high values)
- SOLVELP_
UNFEASIBLE - problem is unfeasible (there are no points that satisfy all the constraints imposed)
- SORT_
ASCENDING - each matrix row is sorted in the ascending order.
- SORT_
DESCENDING - each matrix row is sorted in the descending order; this flag and the previous one are also mutually exclusive.
- SORT_
EVERY_ COLUMN - each matrix column is sorted independently; this flag and the previous one are mutually exclusive.
- SORT_
EVERY_ ROW - each matrix row is sorted independently
- SVD_
FULL_ UV - when the matrix is not square, by default the algorithm produces u and vt matrices of sufficiently large size for the further A reconstruction; if, however, FULL_UV flag is specified, u and vt will be full-size square orthogonal matrices.
- SVD_
MODIFY_ A - allow the algorithm to modify the decomposed matrix; it can save space and speed up processing. currently ignored.
- SVD_
NO_ UV - indicates that only a vector of singular values
w
is to be processed, while u and vt will be set to empty matrices - Sparse
Mat_ HASH_ BIT - Sparse
Mat_ HASH_ SCALE - Sparse
Mat_ MAGIC_ VAL - Sparse
Mat_ MAX_ DIM - StsAssert
- assertion failed
- StsAuto
Trace - tracing
- StsBack
Trace - pseudo error for back trace
- StsBad
Arg - function arg/param is bad
- StsBad
Flag - flag is wrong or not supported
- StsBad
Func - unsupported function
- StsBad
Mask - bad format of mask (neither 8uC1 nor 8sC1)
- StsBad
MemBlock - an allocated block has been corrupted
- StsBad
Point - bad CvPoint
- StsBad
Size - the input/output structure size is incorrect
- StsDiv
ByZero - division by zero
- StsError
- unknown /unspecified error
- StsFilter
Offset Err - incorrect filter offset value
- StsFilter
Struct Content Err - incorrect filter structure content
- StsInplace
NotSupported - in-place operation is not supported
- StsInternal
- internal error (bad state)
- StsKernel
Struct Content Err - incorrect transform kernel content
- StsNo
Conv - iteration didn’t converge
- StsNo
Mem - insufficient memory
- StsNot
Implemented - the requested function/feature is not implemented
- StsNull
Ptr - null pointer
- StsObject
NotFound - request can’t be completed
- StsOk
- everything is ok
- StsOut
OfRange - some of parameters are out of range
- StsParse
Error - invalid syntax/structure of the parsed file
- StsUnmatched
Formats - formats of input/output arrays differ
- StsUnmatched
Sizes - sizes of input/output structures do not match
- StsUnsupported
Format - the data format/type is not supported by the function
- StsVec
Length Err - incorrect vector length
- TRIANGLES
- TRIANGLE_
FAN - TRIANGLE_
STRIP - TYPE_
FUN - TYPE_
GENERAL - TYPE_
MARKER - TYPE_
WRAPPER - Term
Criteria_ COUNT - the maximum number of iterations or elements to compute
- Term
Criteria_ EPS - the desired accuracy or change in parameters at which the iterative algorithm stops
- Term
Criteria_ MAX_ ITER - ditto
- Texture2D_
DEPTH_ COMPONENT - Depth
- Texture2D_
NONE - Texture2D_
RGB - Red, Green, Blue
- Texture2D_
RGBA - Red, Green, Blue, Alpha
- UMat
Data_ ASYNC_ CLEANUP - UMat
Data_ COPY_ ON_ MAP - UMat
Data_ DEVICE_ COPY_ OBSOLETE - UMat
Data_ DEVICE_ MEM_ MAPPED - UMat
Data_ HOST_ COPY_ OBSOLETE - UMat
Data_ TEMP_ COPIED_ UMAT - UMat
Data_ TEMP_ UMAT - UMat
Data_ USER_ ALLOCATED - UMat_
AUTO_ STEP - UMat_
CONTINUOUS_ FLAG - UMat_
DEPTH_ MASK - UMat_
MAGIC_ MASK - UMat_
MAGIC_ VAL - UMat_
SUBMATRIX_ FLAG - UMat_
TYPE_ MASK - USAGE_
ALLOCATE_ DEVICE_ MEMORY - USAGE_
ALLOCATE_ HOST_ MEMORY - USAGE_
ALLOCATE_ SHARED_ MEMORY - USAGE_
DEFAULT - WARP_
SHUFFLE_ FUNCTIONS - _Input
Array_ CUDA_ GPU_ MAT - _Input
Array_ CUDA_ HOST_ MEM - _Input
Array_ EXPR - removed: https://github.com/opencv/opencv/pull/17046
- _Input
Array_ FIXED_ SIZE - _Input
Array_ FIXED_ TYPE - _Input
Array_ KIND_ MASK - _Input
Array_ KIND_ SHIFT - _Input
Array_ MAT - _Input
Array_ MATX - _Input
Array_ NONE - _Input
Array_ OPENGL_ BUFFER - _Input
Array_ STD_ ARRAY - removed: https://github.com/opencv/opencv/issues/18897
- _Input
Array_ STD_ ARRAY_ MAT - _Input
Array_ STD_ BOOL_ VECTOR - _Input
Array_ STD_ VECTOR - _Input
Array_ STD_ VECTOR_ CUDA_ GPU_ MAT - _Input
Array_ STD_ VECTOR_ MAT - _Input
Array_ STD_ VECTOR_ UMAT - _Input
Array_ STD_ VECTOR_ VECTOR - _Input
Array_ UMAT - _Output
Array_ DEPTH_ MASK_ 8S - _Output
Array_ DEPTH_ MASK_ 8U - _Output
Array_ DEPTH_ MASK_ 16F - _Output
Array_ DEPTH_ MASK_ 16S - _Output
Array_ DEPTH_ MASK_ 16U - _Output
Array_ DEPTH_ MASK_ 32F - _Output
Array_ DEPTH_ MASK_ 32S - _Output
Array_ DEPTH_ MASK_ 64F - _Output
Array_ DEPTH_ MASK_ ALL - _Output
Array_ DEPTH_ MASK_ ALL_ 16F - _Output
Array_ DEPTH_ MASK_ ALL_ BUT_ 8S - _Output
Array_ DEPTH_ MASK_ FLT - __
UMAT_ USAGE_ FLAGS_ 32BIT
Traits§
- Algorithm
Trait - Mutable methods for core::Algorithm
- Algorithm
Trait Const - Constant methods for core::Algorithm
- Arrays
Trait - Mutable methods for core::Arrays
- Arrays
Trait Const - Constant methods for core::Arrays
- Async
Array Trait - Mutable methods for core::AsyncArray
- Async
Array Trait Const - Constant methods for core::AsyncArray
- Async
Promise Trait - Mutable methods for core::AsyncPromise
- Async
Promise Trait Const - Constant methods for core::AsyncPromise
- Buffer
Pool Trait - Mutable methods for core::BufferPool
- Buffer
Pool Trait Const - Constant methods for core::BufferPool
- Buffer
Trait - Mutable methods for core::Buffer
- Buffer
Trait Const - Constant methods for core::Buffer
- Command
Line Parser Trait - Mutable methods for core::CommandLineParser
- Command
Line Parser Trait Const - Constant methods for core::CommandLineParser
- Conj
Grad Solver Trait - Mutable methods for core::ConjGradSolver
- Conj
Grad Solver Trait Const - Constant methods for core::ConjGradSolver
- Context
Trait - Mutable methods for core::Context
- Context
Trait Const - Constant methods for core::Context
- Context_
User Context Trait - Mutable methods for core::Context_UserContext
- Context_
User Context Trait Const - Constant methods for core::Context_UserContext
- Data
Type - Implement this trait types that are valid to use as Mat elements.
- Detail_
Check Context Trait - Mutable methods for core::Detail_CheckContext
- Detail_
Check Context Trait Const - Constant methods for core::Detail_CheckContext
- Device
Info Trait - Mutable methods for core::DeviceInfo
- Device
Info Trait Const - Constant methods for core::DeviceInfo
- Device
Trait - Mutable methods for core::Device
- Device
Trait Const - Constant methods for core::Device
- Downhill
Solver Trait - Mutable methods for core::DownhillSolver
- Downhill
Solver Trait Const - Constant methods for core::DownhillSolver
- ElemMul
- Elementwise multiplication
- Event
Trait - Mutable methods for core::Event
- Event
Trait Const - Constant methods for core::Event
- Exception
Trait - Mutable methods for core::Exception
- Exception
Trait Const - Constant methods for core::Exception
- File
Node Iterator Trait - Mutable methods for core::FileNodeIterator
- File
Node Iterator Trait Const - Constant methods for core::FileNodeIterator
- File
Node Trait - Mutable methods for core::FileNode
- File
Node Trait Const - Constant methods for core::FileNode
- File
Storage Trait - Mutable methods for core::FileStorage
- File
Storage Trait Const - Constant methods for core::FileStorage
- Formatted
Trait - Mutable methods for core::Formatted
- Formatted
Trait Const - Constant methods for core::Formatted
- Formatter
Trait - Mutable methods for core::Formatter
- Formatter
Trait Const - Constant methods for core::Formatter
- GpuData
Trait - Mutable methods for core::GpuData
- GpuData
Trait Const - Constant methods for core::GpuData
- GpuMatND
Trait - Mutable methods for core::GpuMatND
- GpuMatND
Trait Const - Constant methods for core::GpuMatND
- GpuMat
Trait - Mutable methods for core::GpuMat
- GpuMat
Trait Const - Constant methods for core::GpuMat
- GpuMat_
Allocator Trait - Mutable methods for core::GpuMat_Allocator
- GpuMat_
Allocator Trait Const - Constant methods for core::GpuMat_Allocator
- Hamming
Trait - Mutable methods for core::Hamming
- Hamming
Trait Const - Constant methods for core::Hamming
- Host
MemTrait - Mutable methods for core::HostMem
- Host
MemTrait Const - Constant methods for core::HostMem
- ID3D10
Device Trait - ID3D10
Texture2D Trait - ID3D11
Device Trait - ID3D11
Texture2D Trait - IDirect3D
Device9 ExTrait - IDirect3D
Device9 Trait - IDirect3D
Surface9 Trait - Image2D
Trait - Mutable methods for core::Image2D
- Image2D
Trait Const - Constant methods for core::Image2D
- Kernel
ArgTrait - Mutable methods for core::KernelArg
- Kernel
ArgTrait Const - Constant methods for core::KernelArg
- Kernel
Trait - Mutable methods for core::Kernel
- Kernel
Trait Const - Constant methods for core::Kernel
- KeyPoint
Trait - Mutable methods for core::KeyPoint
- KeyPoint
Trait Const - Constant methods for core::KeyPoint
- LDATrait
- Mutable methods for core::LDA
- LDATrait
Const - Constant methods for core::LDA
- LogTag
Trait - Mutable methods for core::LogTag
- LogTag
Trait Const - Constant methods for core::LogTag
- MatConst
Iterator Trait - Mutable methods for core::MatConstIterator
- MatConst
Iterator Trait Const - Constant methods for core::MatConstIterator
- MatConst
Iterator Trait Manual - MatExpr
Trait - Mutable methods for core::MatExpr
- MatExpr
Trait Const - Constant methods for core::MatExpr
- MatOp
Trait - Mutable methods for core::MatOp
- MatOp
Trait Const - Constant methods for core::MatOp
- MatSize
Trait - Mutable methods for core::MatSize
- MatSize
Trait Const - Constant methods for core::MatSize
- MatStep
Trait - Mutable methods for core::MatStep
- MatStep
Trait Const - Constant methods for core::MatStep
- MatTrait
- Mutable methods for core::Mat
- MatTrait
Const - Constant methods for core::Mat
- MatTrait
Const Manual - MatTrait
Manual - Matx
Trait - Matx_
AddOp Trait - Mutable methods for core::Matx_AddOp
- Matx_
AddOp Trait Const - Constant methods for core::Matx_AddOp
- Matx_
DivOp Trait - Mutable methods for core::Matx_DivOp
- Matx_
DivOp Trait Const - Constant methods for core::Matx_DivOp
- Matx_
MatMul OpTrait - Mutable methods for core::Matx_MatMulOp
- Matx_
MatMul OpTrait Const - Constant methods for core::Matx_MatMulOp
- Matx_
MulOp Trait - Mutable methods for core::Matx_MulOp
- Matx_
MulOp Trait Const - Constant methods for core::Matx_MulOp
- Matx_
Scale OpTrait - Mutable methods for core::Matx_ScaleOp
- Matx_
Scale OpTrait Const - Constant methods for core::Matx_ScaleOp
- Matx_
SubOp Trait - Mutable methods for core::Matx_SubOp
- Matx_
SubOp Trait Const - Constant methods for core::Matx_SubOp
- Matx_
TOpTrait - Mutable methods for core::Matx_TOp
- Matx_
TOpTrait Const - Constant methods for core::Matx_TOp
- MinProblem
Solver Trait - Mutable methods for core::MinProblemSolver
- MinProblem
Solver Trait Const - Constant methods for core::MinProblemSolver
- MinProblem
Solver_ Function Trait - Mutable methods for core::MinProblemSolver_Function
- MinProblem
Solver_ Function Trait Const - Constant methods for core::MinProblemSolver_Function
- Modify
Inplace - Node
Data Trait - Mutable methods for core::NodeData
- Node
Data Trait Const - Constant methods for core::NodeData
- OpenCL
Execution Context Trait - Mutable methods for core::OpenCLExecutionContext
- OpenCL
Execution Context Trait Const - Constant methods for core::OpenCLExecutionContext
- Original
Class Name Trait - Mutable methods for core::OriginalClassName
- Original
Class Name Trait Const - Constant methods for core::OriginalClassName
- PCATrait
- Mutable methods for core::PCA
- PCATrait
Const - Constant methods for core::PCA
- Parallel
Loop Body Trait - Mutable methods for core::ParallelLoopBody
- Parallel
Loop Body Trait Const - Constant methods for core::ParallelLoopBody
- Platform
Info Trait - Mutable methods for core::PlatformInfo
- Platform
Info Trait Const - Constant methods for core::PlatformInfo
- Platform
Trait - Mutable methods for core::Platform
- Platform
Trait Const - Constant methods for core::Platform
- Program
Source Trait - Mutable methods for core::ProgramSource
- Program
Source Trait Const - Constant methods for core::ProgramSource
- Program
Trait - Mutable methods for core::Program
- Program
Trait Const - Constant methods for core::Program
- Queue
Trait - Mutable methods for core::Queue
- Queue
Trait Const - Constant methods for core::Queue
- RNGTrait
- Mutable methods for core::RNG
- RNGTrait
Const - Constant methods for core::RNG
- RNG_
MT19937 Trait - Mutable methods for core::RNG_MT19937
- RNG_
MT19937 Trait Const - Constant methods for core::RNG_MT19937
- Range
Trait - Mutable methods for core::Range
- Range
Trait Const - Constant methods for core::Range
- SVDTrait
- Mutable methods for core::SVD
- SVDTrait
Const - Constant methods for core::SVD
- Sized
Array - Sparse
MatConst Iterator Trait - Mutable methods for core::SparseMatConstIterator
- Sparse
MatConst Iterator Trait Const - Constant methods for core::SparseMatConstIterator
- Sparse
MatIterator Trait - Mutable methods for core::SparseMatIterator
- Sparse
MatIterator Trait Const - Constant methods for core::SparseMatIterator
- Sparse
MatTrait - Mutable methods for core::SparseMat
- Sparse
MatTrait Const - Constant methods for core::SparseMat
- Sparse
Mat_ HdrTrait - Mutable methods for core::SparseMat_Hdr
- Sparse
Mat_ HdrTrait Const - Constant methods for core::SparseMat_Hdr
- Sparse
Mat_ Node Trait - Mutable methods for core::SparseMat_Node
- Sparse
Mat_ Node Trait Const - Constant methods for core::SparseMat_Node
- Stream
Trait - Mutable methods for core::Stream
- Stream
Trait Const - Constant methods for core::Stream
- Target
Archs Trait - Mutable methods for core::TargetArchs
- Target
Archs Trait Const - Constant methods for core::TargetArchs
- Texture2D
Trait - Mutable methods for core::Texture2D
- Texture2D
Trait Const - Constant methods for core::Texture2D
- Tick
Meter Trait - Mutable methods for core::TickMeter
- Tick
Meter Trait Const - Constant methods for core::TickMeter
- Timer
Trait - Mutable methods for core::Timer
- Timer
Trait Const - Constant methods for core::Timer
- ToInput
Array - Trait to serve as a replacement for
InputArray
in C++ OpenCV - ToInput
Output Array - Trait to serve as a replacement for
InputOutputArray
in C++ OpenCV - ToOutput
Array - Trait to serve as a replacement for
OutputArray
in C++ OpenCV - Tuple
Extern - UMat
Data Trait - Mutable methods for core::UMatData
- UMat
Data Trait Const - Constant methods for core::UMatData
- UMat
Trait - Mutable methods for core::UMat
- UMat
Trait Const - Constant methods for core::UMat
- Vector
ToVec - Write
Struct Context Trait - Mutable methods for core::WriteStructContext
- Write
Struct Context Trait Const - Constant methods for core::WriteStructContext
- _Input
Array Trait - Mutable methods for core::_InputArray
- _Input
Array Trait Const - Constant methods for core::_InputArray
- _Input
Output Array Trait - Mutable methods for core::_InputOutputArray
- _Input
Output Array Trait Const - Constant methods for core::_InputOutputArray
- _Output
Array Trait - Mutable methods for core::_OutputArray
- _Output
Array Trait Const - Constant methods for core::_OutputArray
Functions§
- CV_8SC
- CV_8UC
- CV_16FC
- CV_16SC
- CV_16UC
- CV_32FC
- CV_32SC
- CV_64FC
- CV_
MAKETYPE - CV_
MAKE_ TYPE - CV_
MAT_ DEPTH - abs
- Calculates an absolute value of each matrix element.
- abs_
matexpr - Calculates an absolute value of each matrix element.
- absdiff
- Calculates the per-element absolute difference between two arrays or between an array and a scalar.
- add
- Calculates the per-element sum of two arrays or an array and a scalar.
- add_def
- Calculates the per-element sum of two arrays or an array and a scalar.
- add_
mat_ mat - @relates cv::MatExpr
- add_
mat_ matexpr - add_
mat_ scalar - add_
matexpr_ mat - add_
matexpr_ matexpr - add_
matexpr_ scalar - add_
samples_ data_ search_ path - Override search data path by adding new search location
- add_
samples_ data_ search_ sub_ directory - Append samples search data sub directory
- add_
scalar_ mat - add_
scalar_ matexpr - add_
weighted - Calculates the weighted sum of two arrays.
- add_
weighted_ def - Calculates the weighted sum of two arrays.
- and_
mat_ mat - and_
mat_ scalar - and_
scalar_ mat - attach_
context ⚠ - Attaches OpenCL context to OpenCV
- batch_
distance - naive nearest neighbor finder
- batch_
distance_ def - naive nearest neighbor finder
- bitwise_
and - computes bitwise conjunction of the two arrays (dst = src1 & src2) Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar.
- bitwise_
and_ def - computes bitwise conjunction of the two arrays (dst = src1 & src2) Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar.
- bitwise_
not - Inverts every bit of an array.
- bitwise_
not_ def - Inverts every bit of an array.
- bitwise_
or - Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar.
- bitwise_
or_ def - Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar.
- bitwise_
xor - Calculates the per-element bit-wise “exclusive or” operation on two arrays or an array and a scalar.
- bitwise_
xor_ def - Calculates the per-element bit-wise “exclusive or” operation on two arrays or an array and a scalar.
- border_
interpolate - Computes the source location of an extrapolated pixel.
- broadcast
- Broadcast the given Mat to the given shape.
- build_
options_ add_ matrix_ description - calc_
covar_ matrix - Calculates the covariance matrix of a set of vectors.
- calc_
covar_ matrix_ def - @overload
- cart_
to_ polar - Calculates the magnitude and angle of 2D vectors.
- cart_
to_ polar_ def - Calculates the magnitude and angle of 2D vectors.
- check_
failed_ auto - check_
failed_ auto_ 1 - check_
failed_ auto_ 2 - check_
failed_ auto_ 3 - check_
failed_ auto_ 4 - check_
failed_ auto_ 5 - check_
failed_ auto_ 6 - check_
failed_ auto_ 7 - check_
failed_ auto_ 8 - check_
failed_ auto_ 9 - check_
failed_ auto_ 10 - check_
failed_ auto_ 11 - check_
failed_ false - check_
failed_ mat_ channels - check_
failed_ mat_ channels_ 1 - check_
failed_ mat_ depth - check_
failed_ mat_ depth_ 1 - check_
failed_ mat_ type - check_
failed_ mat_ type_ 1 - check_
failed_ true - check_
hardware_ support - Returns true if the specified feature is supported by the host hardware.
- check_
optimal_ vector_ width - C++ default parameters
- check_
optimal_ vector_ width_ def - Note
- check_
range - Checks every element of an input array for invalid values.
- check_
range_ def - Checks every element of an input array for invalid values.
- cholesky
- proxy for hal::Cholesky
- cholesky_
f32 - proxy for hal::Cholesky
- compare
- Performs the per-element comparison of two arrays or an array and scalar value.
- complete_
symm - Copies the lower or the upper half of a square matrix to its another half.
- complete_
symm_ def - Copies the lower or the upper half of a square matrix to its another half.
- convert_
fp16 Deprecated - Converts an array to half precision floating number.
- convert_
from_ ⚠buffer - Convert OpenCL buffer to UMat
- convert_
from_ d3d10_ texture_ 2d - Parameters
- convert_
from_ d3d11_ texture_ 2d - Parameters
- convert_
from_ ⚠direct_ 3d_ surface9 - Parameters
- convert_
from_ direct_ 3d_ surface9_ def - Parameters
- convert_
from_ gl_ texture_ 2d - Converts Texture2D object to OutputArray.
- convert_
from_ ⚠image - Convert OpenCL image2d_t to UMat
- convert_
from_ ⚠va_ surface - Converts VASurfaceID object to OutputArray.
- convert_
scale_ abs - Scales, calculates absolute values, and converts the result to 8-bit.
- convert_
scale_ abs_ def - Scales, calculates absolute values, and converts the result to 8-bit.
- convert_
to_ d3d10_ texture_ 2d - Parameters
- convert_
to_ d3d11_ texture_ 2d - Parameters
- convert_
to_ ⚠direct_ 3d_ surface9 - Parameters
- convert_
to_ direct_ 3d_ surface9_ def - Parameters
- convert_
to_ gl_ texture_ 2d - Converts InputArray to Texture2D object.
- convert_
to_ ⚠va_ surface - Converts InputArray to VASurfaceID object.
- convert_
type_ str - convert_
type_ str_ 1 - copy_
make_ border - Forms a border around an image.
- copy_
make_ border_ def - Forms a border around an image.
- copy_
mat_ and_ dump_ named_ arguments - C++ default parameters
- copy_
mat_ and_ dump_ named_ arguments_ def - Note
- copy_to
- This is an overloaded member function, provided for convenience (python) Copies the matrix to another one. When the operation mask is specified, if the Mat::create call shown above reallocates the matrix, the newly allocated matrix is initialized with all zeros before copying the data.
- count_
non_ zero - Counts non-zero array elements.
- create_
continuous - Creates a continuous matrix.
- create_
gpu_ mat_ from_ cuda_ memory - Bindings overload to create a GpuMat from existing GPU memory.
- create_
gpu_ mat_ from_ cuda_ memory_ 1 - Bindings overload to create a GpuMat from existing GPU memory.
- create_
gpu_ mat_ from_ cuda_ memory_ 1_ def - @overload
- create_
gpu_ mat_ from_ cuda_ memory_ def - Bindings overload to create a GpuMat from existing GPU memory.
- cube_
root - Computes the cube root of an argument.
- dct
- Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
- dct_def
- Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
- depth_
to_ string - Returns string of cv::Mat depth value: CV_8U -> “CV_8U” or “
” - determinant
- Returns the determinant of a square floating-point matrix.
- device_
supports - checks whether current device supports the given feature
- dft
- Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
- dft_def
- Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
- div_
f64_ mat - div_
f64_ matexpr - div_
mat_ f64 - div_
mat_ mat - div_
mat_ matexpr - div_
matexpr_ f64 - div_
matexpr_ mat - div_
matexpr_ matexpr - divide
- Performs per-element division of two arrays or a scalar by an array.
- divide2
- Performs per-element division of two arrays or a scalar by an array.
- divide2_
def - Performs per-element division of two arrays or a scalar by an array.
- divide_
def - @overload
- dump_
bool - dump_
c_ string - dump_
double - dump_
float - dump_
input_ array - dump_
input_ array_ of_ arrays - dump_
input_ output_ array - dump_
input_ output_ array_ of_ arrays - dump_
int - dump_
int64 - dump_
range - dump_
rect - dump_
rotated_ rect - dump_
size_ t - dump_
string - dump_
term_ criteria - dump_
vec2i - C++ default parameters
- dump_
vec2i_ def - Note
- dump_
vector_ of_ double - dump_
vector_ of_ int - dump_
vector_ of_ rect - eigen
- Calculates eigenvalues and eigenvectors of a symmetric matrix.
- eigen_
def - Calculates eigenvalues and eigenvectors of a symmetric matrix.
- eigen_
non_ symmetric - Calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only).
- ensure_
size_ is_ enough - Ensures that the size of a matrix is big enough and the matrix has a proper type.
- equals_
f64_ mat - equals_
filenodeiterator_ filenodeiterator - equals_
mat_ f64 - equals_
mat_ mat - error
- ! Signals an error and raises the exception.
- error_1
Deprecated - ! Signals an error and raises the exception.
- exp
- Calculates the exponent of every array element.
- extract_
channel - Extracts a single channel from src (coi is 0-based index)
- fast_
atan2 - Calculates the angle of a 2D vector in degrees.
- find_
file - Try to find requested data file
- find_
file_ def - Try to find requested data file
- find_
file_ or_ keep - C++ default parameters
- find_
file_ or_ keep_ def - Note
- find_
non_ zero - Returns the list of locations of non-zero pixels
- finish
- flip
- Flips a 2D array around vertical, horizontal, or both axes.
- flip_nd
- Flips a n-dimensional at given axis
- gemm
- Performs generalized matrix multiplication.
- gemm_
def - Performs generalized matrix multiplication.
- generate_
vector_ of_ int - generate_
vector_ of_ mat - generate_
vector_ of_ rect - get_
build_ information - Returns full configuration time cmake output.
- get_
cache_ directory_ for_ downloads - get_
cpu_ features_ line - Returns list of CPU features enabled during compilation.
- get_
cpu_ tick_ count - Returns the number of CPU ticks.
- get_
cuda_ enabled_ device_ count - Returns the number of installed CUDA-enabled devices.
- get_
default_ algorithm_ hint - ! Returns AlgorithmHint defined during OpenCV compilation. Defines ALGO_HINT_DEFAULT behavior.
- get_
device - Returns the current device index set by cuda::setDevice or initialized by default.
- get_
elem_ size - get_
flags - get_
global_ log_ tag - Get global log tag
- get_
hardware_ feature_ name - Returns feature name by ID
- get_
ipp_ error_ location - get_
ipp_ features - get_
ipp_ status - get_
ipp_ version - get_
log_ level - Get global logging level
- get_
log_ level_ 1 - get_
log_ tag_ level - get_
num_ threads - Returns the number of threads used by OpenCV for parallel regions.
- get_
number_ of_ cpus - Returns the number of logical CPUs available for the process.
- get_
opencl_ error_ string - get_
optimal_ dft_ size - Returns the optimal DFT size for a given vector size.
- get_
platfoms_ info - get_
thread_ id - get_
thread_ num Deprecated - Returns the index of the currently executed thread within the current parallel region. Always returns 0 if called outside of parallel region.
- get_
tick_ count - Returns the number of ticks.
- get_
tick_ frequency - Returns the number of ticks per second.
- get_
type_ from_ d3d_ format - Get OpenCV type from DirectX type
- get_
type_ from_ dxgi_ format - Get OpenCV type from DirectX type
- get_
version_ major - Returns major library version
- get_
version_ minor - Returns minor library version
- get_
version_ revision - Returns revision field of the library version
- get_
version_ string - Returns library version string
- glob
- Searches for files matching the specified pattern in a directory.
- glob_
def - Searches for files matching the specified pattern in a directory.
- greater_
than_ f64_ mat - greater_
than_ mat_ f64 - greater_
than_ mat_ mat - greater_
than_ or_ equal_ f64_ mat - greater_
than_ or_ equal_ mat_ f64 - greater_
than_ or_ equal_ mat_ mat - has_
non_ zero - Checks for the presence of at least one non-zero array element.
- have_
amd_ blas - have_
amd_ fft - have_
opencl - have_
openvx - Check if use of OpenVX is possible
- have_
svm - hconcat
- Applies horizontal concatenation to given matrices.
- hconcat2
- Applies horizontal concatenation to given matrices.
- idct
- Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
- idct_
def - Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
- idft
- Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
- idft_
def - Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
- in_
range - Checks if array elements lie between the elements of two other arrays.
- initialize_
context_ from_ d3d10_ device - Parameters
- initialize_
context_ from_ d3d11_ device - Parameters
- initialize_
context_ from_ direct_ 3d_ device9 - Parameters
- initialize_
context_ from_ direct_ 3d_ device9_ ex - Parameters
- initialize_
context_ from_ gl - Creates OpenCL context from GL.
- initialize_
context_ ⚠from_ va - Creates OpenCL context from VA.
- initialize_
context_ ⚠from_ va_ def - Creates OpenCL context from VA.
- insert_
channel - Inserts a single channel to dst (coi is 0-based index)
- invert
- Finds the inverse or pseudo-inverse of a matrix.
- invert_
def - Finds the inverse or pseudo-inverse of a matrix.
- kernel_
to_ str - C++ default parameters
- kernel_
to_ str_ def - Note
- kmeans
- Finds centers of clusters and groups input samples around the clusters.
- kmeans_
def - Finds centers of clusters and groups input samples around the clusters.
- less_
than_ f64_ mat - less_
than_ mat_ f64 - less_
than_ mat_ mat - less_
than_ or_ equal_ f64_ mat - less_
than_ or_ equal_ mat_ f64 - less_
than_ or_ equal_ mat_ mat - log
- Calculates the natural logarithm of every array element.
- lu
- proxy for hal::LU
- lu_f32
- proxy for hal::LU
- lut
- Performs a look-up table transform of an array.
- magnitude
- Calculates the magnitude of 2D vectors.
- mahalanobis
- Calculates the Mahalanobis distance between two vectors.
- map_
gl_ buffer - Maps Buffer object to process on CL side (convert to UMat).
- map_
gl_ buffer_ def - Maps Buffer object to process on CL side (convert to UMat).
- max
- Calculates per-element maximum of two arrays or an array and a scalar.
- max_
f64_ mat - max_mat
- max_
mat_ f64 - max_
mat_ to - Calculates per-element maximum of two arrays or an array and a scalar.
- max_
umat_ to - Calculates per-element maximum of two arrays or an array and a scalar.
- mean
- Calculates an average (mean) of array elements.
- mean_
def - Calculates an average (mean) of array elements.
- mean_
std_ dev - Calculates a mean and standard deviation of array elements.
- mean_
std_ dev_ def - Calculates a mean and standard deviation of array elements.
- memop_
type_ to_ str - merge
- Creates one multi-channel array out of several single-channel ones.
- min
- Calculates per-element minimum of two arrays or an array and a scalar.
- min_
f64_ mat - min_mat
- min_
mat_ f64 - min_
mat_ to - Calculates per-element minimum of two arrays or an array and a scalar.
- min_
max_ idx - Finds the global minimum and maximum in an array
- min_
max_ idx_ def - Finds the global minimum and maximum in an array
- min_
max_ loc - Finds the global minimum and maximum in an array.
- min_
max_ loc_ def - Finds the global minimum and maximum in an array.
- min_
max_ loc_ sparse - Finds the global minimum and maximum in an array.
- min_
max_ loc_ sparse_ def - @overload
- min_
umat_ to - Calculates per-element minimum of two arrays or an array and a scalar.
- mix_
channels - Copies specified channels from input arrays to the specified channels of output arrays.
- mix_
channels_ vec - Copies specified channels from input arrays to the specified channels of output arrays.
- mul_
f64_ mat - mul_
f64_ matexpr - mul_
mat_ f64 - mul_
mat_ mat - mul_
mat_ matexpr - mul_
matexpr_ f64 - mul_
matexpr_ mat - mul_
matexpr_ matexpr - mul_
spectrums - Performs the per-element multiplication of two Fourier spectrums.
- mul_
spectrums_ def - Performs the per-element multiplication of two Fourier spectrums.
- mul_
transposed - Calculates the product of a matrix and its transposition.
- mul_
transposed_ def - Calculates the product of a matrix and its transposition.
- multiply
- Calculates the per-element scaled product of two arrays.
- multiply_
def - Calculates the per-element scaled product of two arrays.
- negate
- no_
array - Returns an empty InputArray or OutputArray.
- norm
- Calculates the absolute norm of an array.
- norm2
- Calculates an absolute difference norm or a relative difference norm.
- norm2_
def - Calculates an absolute difference norm or a relative difference norm.
- norm_
def - Calculates the absolute norm of an array.
- norm_
sparse - Calculates an absolute difference norm or a relative difference norm.
- normalize
- Normalizes the norm or value range of an array.
- normalize_
def - Normalizes the norm or value range of an array.
- normalize_
sparse - Normalizes the norm or value range of an array.
- not_
equals_ f64_ mat - not_
equals_ filenodeiterator_ filenodeiterator - not_
equals_ mat_ f64 - not_
equals_ mat_ mat - or_
mat_ mat - or_
mat_ scalar - or_
scalar_ mat - parallel_
for_ - Parallel data processor
- parallel_
for__ def - Parallel data processor
- patch_
na_ ns - Replaces NaNs by given number
- patch_
na_ ns_ def - Replaces NaNs by given number
- pca_
back_ project - wrap PCA::backProject
- pca_
compute - wrap PCA::operator()
- pca_
compute2 - wrap PCA::operator() and add eigenvalues output parameter
- pca_
compute2_ def - wrap PCA::operator() and add eigenvalues output parameter
- pca_
compute2_ variance - wrap PCA::operator() and add eigenvalues output parameter
- pca_
compute_ def - wrap PCA::operator()
- pca_
compute_ variance - wrap PCA::operator()
- pca_
project - wrap PCA::project
- perspective_
transform - Performs the perspective matrix transformation of vectors.
- phase
- Calculates the rotation angle of 2D vectors.
- phase_
def - Calculates the rotation angle of 2D vectors.
- polar_
to_ cart - Calculates x and y coordinates of 2D vectors from their magnitude and angle.
- polar_
to_ cart_ def - Calculates x and y coordinates of 2D vectors from their magnitude and angle.
- pow
- Raises every array element to a power.
- predict_
optimal_ vector_ width - C++ default parameters
- predict_
optimal_ vector_ width_ def - Note
- predict_
optimal_ vector_ width_ max - C++ default parameters
- predict_
optimal_ vector_ width_ max_ def - Note
- print_
cuda_ device_ info - print_
short_ cuda_ device_ info - psnr
- Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.
- psnr_
def - Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.
- rand_
shuffle - Shuffles the array elements randomly.
- rand_
shuffle_ def - Shuffles the array elements randomly.
- randn
- Fills the array with normally distributed random numbers.
- randu
- Generates a single uniformly-distributed random number or an array of random numbers.
- read
- read_
dmatch - read_
dmatch_ vec_ legacy - read_
f32 - read_
f64 - read_
i32 - read_
keypoint - read_
keypoint_ vec_ legacy - read_
mat - C++ default parameters
- read_
mat_ def - Note
- read_
sparsemat - C++ default parameters
- read_
sparsemat_ def - Note
- read_
str - rectangle_
intersection_ area - Finds out if there is any intersection between two rectangles
- reduce
- Reduces a matrix to a vector.
- reduce_
arg_ max - Finds indices of max elements along provided axis
- reduce_
arg_ max_ def - Finds indices of max elements along provided axis
- reduce_
arg_ min - Finds indices of min elements along provided axis
- reduce_
arg_ min_ def - Finds indices of min elements along provided axis
- reduce_
def - Reduces a matrix to a vector.
- register_
log_ tag - register_
page_ locked - Page-locks the memory of matrix and maps it for the device(s).
- render
- Render OpenGL texture or primitives.
- render_
1 - Render OpenGL texture or primitives.
- render_
2 - Render OpenGL texture or primitives.
- render_
1_ def - @overload
- render_
2_ def - @overload
- render_
def - Render OpenGL texture or primitives.
- repeat
- Fills the output array with repeated copies of the input array.
- repeat_
to - Fills the output array with repeated copies of the input array.
- reset_
device - Explicitly destroys and cleans up all resources associated with the current device in the current process.
- reset_
trace - rotate
- Rotates a 2D array in multiples of 90 degrees. The function cv::rotate rotates the array in one of three different ways:
- scale_
add - Calculates the sum of a scaled array and another array.
- set_
break_ on_ error - Sets/resets the break-on-error mode.
- set_
buffer_ pool_ config - set_
buffer_ pool_ usage - BufferPool management (must be called before Stream creation)
- set_
device - Sets a device and initializes it for the current thread.
- set_
flags - set_
gl_ device - Sets a CUDA device and initializes it for the current thread with OpenGL interoperability.
- set_
gl_ device_ def - Sets a CUDA device and initializes it for the current thread with OpenGL interoperability.
- set_
identity - Initializes a scaled identity matrix.
- set_
identity_ def - Initializes a scaled identity matrix.
- set_
ipp_ status - C++ default parameters
- set_
ipp_ status_ def - Note
- set_
log_ level - Set global logging level
- set_
log_ level_ 1 - @cond IGNORED
- set_
log_ tag_ level - set_
num_ threads - OpenCV will try to set the number of threads for subsequent parallel regions.
- set_
rng_ seed - Sets state of default random number generator.
- set_
use_ instrumentation - set_
use_ ipp - set_
use_ ipp_ not_ exact - set_
use_ opencl - set_
use_ openvx - Enable/disable use of OpenVX
- set_
use_ optimized - Enables or disables the optimized code.
- solve
- Solves one or more linear systems or least-squares problems.
- solve_
cubic - Finds the real roots of a cubic equation.
- solve_
def - Solves one or more linear systems or least-squares problems.
- solve_
lp - Solve given (non-integer) linear programming problem using the Simplex Algorithm (Simplex Method).
- solve_
lp_ 1 - Solve given (non-integer) linear programming problem using the Simplex Algorithm (Simplex Method).
- solve_
poly - Finds the real or complex roots of a polynomial equation.
- solve_
poly_ def - Finds the real or complex roots of a polynomial equation.
- sort
- Sorts each row or each column of a matrix.
- sort_
idx - Sorts each row or each column of a matrix.
- split
- Divides a multi-channel array into several single-channel arrays.
- split_
slice - Divides a multi-channel array into several single-channel arrays.
- sqrt
- Calculates a square root of array elements.
- sub_mat
- sub_
mat_ mat - sub_
mat_ matexpr - sub_
mat_ scalar - sub_
matexpr - sub_
matexpr_ mat - sub_
matexpr_ matexpr - sub_
matexpr_ scalar - sub_
scalar_ mat - sub_
scalar_ matexpr - subtract
- Calculates the per-element difference between two arrays or array and a scalar.
- subtract_
def - Calculates the per-element difference between two arrays or array and a scalar.
- sum_
elems - Calculates the sum of array elements.
- sv_
back_ subst - wrap SVD::backSubst
- sv_
decomp - wrap SVD::compute
- sv_
decomp_ def - wrap SVD::compute
- swap
- Swaps two matrices
- swap_
umat - Swaps two matrices
- tempfile
- Generates a unique temporary file name.
- tempfile_
def - Generates a unique temporary file name.
- terminate
- ! Signals an error and terminate application.
- test_
async_ array - test_
async_ exception - test_
echo_ boolean_ function - test_
overload_ resolution - @cond IGNORED
- test_
overload_ resolution_ 1 - test_
overload_ resolution_ def - @cond IGNORED
- test_
overwrite_ native_ method - test_
raise_ general_ exception - test_
reserved_ keyword_ conversion - C++ default parameters
- test_
reserved_ keyword_ conversion_ def - Note
- test_
rotated_ rect - test_
rotated_ rect_ vector - the_rng
- Returns the default random number generator.
- trace
- Returns the trace of a matrix.
- transform
- Performs the matrix transformation of every array element.
- transpose
- Transposes a matrix.
- transpose_
nd - Transpose for n-dimensional matrices.
- type_
to_ str - type_
to_ string - Returns string of cv::Mat depth value: CV_8UC3 -> “CV_8UC3” or “
” - unmap_
gl_ buffer - Unmaps Buffer object (releases UMat, previously mapped from Buffer).
- unregister_
page_ locked - Unmaps the memory of matrix and makes it pageable again.
- use_
instrumentation - use_ipp
- use_
ipp_ not_ exact - use_
opencl - use_
openvx - Check if use of OpenVX is enabled
- use_
optimized - Returns the status of optimized code usage.
- vconcat
- Applies vertical concatenation to given matrices.
- vconcat2
- Applies vertical concatenation to given matrices.
- vecop_
type_ to_ str - wrap_
stream - Bindings overload to create a Stream object from the address stored in an existing CUDA Runtime API stream pointer (cudaStream_t).
- write
- write_
dmatch_ vec - write_
f32 - write_
f64 - write_
i32 - //////////////// XML & YAML I/O implementation //////////////////
- write_
keypoint_ vec - write_
log_ message - Write log message
- write_
log_ message_ ex - Write log message
- write_
mat - write_
scalar - write_
scalar_ f32 - write_
scalar_ f64 - write_
scalar_ i32 - write_
scalar_ str - write_
sparsemat - write_
str - xor_
mat_ mat - xor_
mat_ scalar - xor_
scalar_ mat
Type Aliases§
- Affine3d
- Affine3f
- GpuMatND_
Index Array - GpuMatND_
Size Array - GpuMatND_
Step Array - HammingLUT
- Hamming_
Result Type - Hamming_
Value Type - Input
Array - Input
Array OfArrays - Input
Output Array - Input
Output Array OfArrays - Mat1b
- Mat1d
- Mat1f
- Mat1i
- Mat1s
- Mat1w
- Mat2b
- Mat2d
- Mat2f
- Mat2i
- Mat2s
- Mat2w
- Mat3b
- Mat3d
- Mat3f
- Mat3i
- Mat3s
- Mat3w
- Mat4b
- Mat4d
- Mat4f
- Mat4i
- Mat4s
- Mat4w
- MatConst
Iterator_ difference_ type - MatConst
Iterator_ pointer - MatConst
Iterator_ reference - MatConst
Iterator_ value_ type - MatND
- Matx12
- Matx13
- Matx14
- Matx16
- Matx21
- Matx22
- Matx23
- Matx31
- Matx32
- Matx33
- Matx34
- Matx41
- Matx43
- Matx44
- Matx61
- Matx66
- Matx12d
- Matx12f
- Matx13d
- Matx13f
- Matx14d
- Matx14f
- Matx16d
- Matx16f
- Matx21d
- Matx21f
- Matx22d
- Matx22f
- Matx23d
- Matx23f
- Matx31d
- Matx31f
- Matx32d
- Matx32f
- Matx33d
- Matx33f
- Matx34d
- Matx34f
- Matx41d
- Matx41f
- Matx43d
- Matx43f
- Matx44d
- Matx44f
- Matx61d
- Matx61f
- Matx66d
- Matx66f
- Output
Array - Output
Array OfArrays - Point
- Point2d
- Point2f
- Point2i
- Point2l
- Point3d
- Point3f
- Point3i
- Program
Source_ hash_ t - Rect
- Rect2d
- Rect2f
- Rect2i
- Scalar
- Scalar_
- docs.opencv.org
- Size
- Size2d
- Size2f
- Size2i
- Size2l
- Sparse
Mat_ const_ iterator - Sparse
Mat_ iterator - Stream_
Stream Callback - VADisplay
- VASurfaceID
- Vec2b
- Shorter aliases for the most popular specializations of Vec<T,n>
- Vec2d
- Vec2f
- Vec2i
- Vec2s
- Vec2w
- Vec3b
- Vec3d
- Vec3f
- Vec3i
- Vec3s
- Vec3w
- Vec4b
- Vec4d
- Vec4f
- Vec4i
- Vec4s
- Vec4w
- Vec6d
- Vec6f
- Vec6i
- Vec8i
- float16_
t