pub struct EM { /* private fields */ }Expand description
Implementations§
Source§impl EM
impl EM
Sourcepub fn create() -> Result<Ptr<EM>>
pub fn create() -> Result<Ptr<EM>>
Creates empty %EM model. The model should be trained then using StatModel::train(traindata, flags) method. Alternatively, you can use one of the EM::train* methods or load it from file using Algorithm::load<EM>(filename).
Sourcepub fn load(filepath: &str, node_name: &str) -> Result<Ptr<EM>>
pub fn load(filepath: &str, node_name: &str) -> Result<Ptr<EM>>
Loads and creates a serialized EM from a file
Use EM::save to serialize and store an EM to disk. Load the EM from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
§Parameters
- filepath: path to serialized EM
- nodeName: name of node containing the classifier
§C++ default parameters
- node_name: String()
Sourcepub fn load_def(filepath: &str) -> Result<Ptr<EM>>
pub fn load_def(filepath: &str) -> Result<Ptr<EM>>
Loads and creates a serialized EM from a file
Use EM::save to serialize and store an EM to disk. Load the EM from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
§Parameters
- filepath: path to serialized EM
- nodeName: name of node containing the classifier
§Note
This alternative version of EM::load function uses the following default values for its arguments:
- node_name: String()
Trait Implementations§
Source§impl AlgorithmTrait for EM
impl AlgorithmTrait for EM
Source§impl AlgorithmTraitConst for EM
impl AlgorithmTraitConst for EM
fn as_raw_Algorithm(&self) -> *const c_void
Source§fn write(&self, fs: &mut impl FileStorageTrait) -> Result<()>
fn write(&self, fs: &mut impl FileStorageTrait) -> Result<()>
Source§fn write_1(&self, fs: &mut impl FileStorageTrait, name: &str) -> Result<()>
fn write_1(&self, fs: &mut impl FileStorageTrait, name: &str) -> Result<()>
Source§fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
Source§fn write_with_name_def(&self, fs: &Ptr<FileStorage>) -> Result<()>
fn write_with_name_def(&self, fs: &Ptr<FileStorage>) -> Result<()>
§Note
Source§fn empty(&self) -> Result<bool>
fn empty(&self) -> Result<bool>
Source§fn save(&self, filename: &str) -> Result<()>
fn save(&self, filename: &str) -> Result<()>
Source§fn get_default_name(&self) -> Result<String>
fn get_default_name(&self) -> Result<String>
Source§impl Boxed for EM
impl Boxed for EM
Source§unsafe fn from_raw(ptr: <EM as OpenCVFromExtern>::ExternReceive) -> Self
unsafe fn from_raw(ptr: <EM as OpenCVFromExtern>::ExternReceive) -> Self
Source§fn into_raw(self) -> <EM as OpenCVTypeExternContainer>::ExternSendMut
fn into_raw(self) -> <EM as OpenCVTypeExternContainer>::ExternSendMut
Source§fn as_raw(&self) -> <EM as OpenCVTypeExternContainer>::ExternSend
fn as_raw(&self) -> <EM as OpenCVTypeExternContainer>::ExternSend
Source§fn as_raw_mut(&mut self) -> <EM as OpenCVTypeExternContainer>::ExternSendMut
fn as_raw_mut(&mut self) -> <EM as OpenCVTypeExternContainer>::ExternSendMut
Source§impl EMTrait for EM
impl EMTrait for EM
fn as_raw_mut_EM(&mut self) -> *mut c_void
Source§fn set_clusters_number(&mut self, val: i32) -> Result<()>
fn set_clusters_number(&mut self, val: i32) -> Result<()>
Source§fn set_covariance_matrix_type(&mut self, val: i32) -> Result<()>
fn set_covariance_matrix_type(&mut self, val: i32) -> Result<()>
Source§fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
Source§fn train_em(
&mut self,
samples: &impl ToInputArray,
log_likelihoods: &mut impl ToOutputArray,
labels: &mut impl ToOutputArray,
probs: &mut impl ToOutputArray,
) -> Result<bool>
fn train_em( &mut self, samples: &impl ToInputArray, log_likelihoods: &mut impl ToOutputArray, labels: &mut impl ToOutputArray, probs: &mut impl ToOutputArray, ) -> Result<bool>
Source§fn train_em_def(&mut self, samples: &impl ToInputArray) -> Result<bool>
fn train_em_def(&mut self, samples: &impl ToInputArray) -> Result<bool>
Source§fn train_e(
&mut self,
samples: &impl ToInputArray,
means0: &impl ToInputArray,
covs0: &impl ToInputArray,
weights0: &impl ToInputArray,
log_likelihoods: &mut impl ToOutputArray,
labels: &mut impl ToOutputArray,
probs: &mut impl ToOutputArray,
) -> Result<bool>
fn train_e( &mut self, samples: &impl ToInputArray, means0: &impl ToInputArray, covs0: &impl ToInputArray, weights0: &impl ToInputArray, log_likelihoods: &mut impl ToOutputArray, labels: &mut impl ToOutputArray, probs: &mut impl ToOutputArray, ) -> Result<bool>
Source§fn train_e_def(
&mut self,
samples: &impl ToInputArray,
means0: &impl ToInputArray,
) -> Result<bool>
fn train_e_def( &mut self, samples: &impl ToInputArray, means0: &impl ToInputArray, ) -> Result<bool>
Source§fn train_m(
&mut self,
samples: &impl ToInputArray,
probs0: &impl ToInputArray,
log_likelihoods: &mut impl ToOutputArray,
labels: &mut impl ToOutputArray,
probs: &mut impl ToOutputArray,
) -> Result<bool>
fn train_m( &mut self, samples: &impl ToInputArray, probs0: &impl ToInputArray, log_likelihoods: &mut impl ToOutputArray, labels: &mut impl ToOutputArray, probs: &mut impl ToOutputArray, ) -> Result<bool>
Source§fn train_m_def(
&mut self,
samples: &impl ToInputArray,
probs0: &impl ToInputArray,
) -> Result<bool>
fn train_m_def( &mut self, samples: &impl ToInputArray, probs0: &impl ToInputArray, ) -> Result<bool>
Source§impl EMTraitConst for EM
impl EMTraitConst for EM
fn as_raw_EM(&self) -> *const c_void
Source§fn get_clusters_number(&self) -> Result<i32>
fn get_clusters_number(&self) -> Result<i32>
Source§fn get_covariance_matrix_type(&self) -> Result<i32>
fn get_covariance_matrix_type(&self) -> Result<i32>
Source§fn get_term_criteria(&self) -> Result<TermCriteria>
fn get_term_criteria(&self) -> Result<TermCriteria>
Source§fn get_means(&self) -> Result<Mat>
fn get_means(&self) -> Result<Mat>
Source§fn get_covs(&self, covs: &mut Vector<Mat>) -> Result<()>
fn get_covs(&self, covs: &mut Vector<Mat>) -> Result<()>
Source§fn predict(
&self,
samples: &impl ToInputArray,
results: &mut impl ToOutputArray,
flags: i32,
) -> Result<f32>
fn predict( &self, samples: &impl ToInputArray, results: &mut impl ToOutputArray, flags: i32, ) -> Result<f32>
Source§fn predict_def(&self, samples: &impl ToInputArray) -> Result<f32>
fn predict_def(&self, samples: &impl ToInputArray) -> Result<f32>
Source§fn predict2(
&self,
sample: &impl ToInputArray,
probs: &mut impl ToOutputArray,
) -> Result<Vec2d>
fn predict2( &self, sample: &impl ToInputArray, probs: &mut impl ToOutputArray, ) -> Result<Vec2d>
Source§impl StatModelTrait for EM
impl StatModelTrait for EM
fn as_raw_mut_StatModel(&mut self) -> *mut c_void
Source§fn train_with_data(
&mut self,
train_data: &Ptr<TrainData>,
flags: i32,
) -> Result<bool>
fn train_with_data( &mut self, train_data: &Ptr<TrainData>, flags: i32, ) -> Result<bool>
Source§fn train_with_data_def(&mut self, train_data: &Ptr<TrainData>) -> Result<bool>
fn train_with_data_def(&mut self, train_data: &Ptr<TrainData>) -> Result<bool>
Source§fn train(
&mut self,
samples: &impl ToInputArray,
layout: i32,
responses: &impl ToInputArray,
) -> Result<bool>
fn train( &mut self, samples: &impl ToInputArray, layout: i32, responses: &impl ToInputArray, ) -> Result<bool>
Source§impl StatModelTraitConst for EM
impl StatModelTraitConst for EM
fn as_raw_StatModel(&self) -> *const c_void
Source§fn get_var_count(&self) -> Result<i32>
fn get_var_count(&self) -> Result<i32>
fn empty(&self) -> Result<bool>
Source§fn is_trained(&self) -> Result<bool>
fn is_trained(&self) -> Result<bool>
Source§fn is_classifier(&self) -> Result<bool>
fn is_classifier(&self) -> Result<bool>
Source§fn calc_error(
&self,
data: &Ptr<TrainData>,
test: bool,
resp: &mut impl ToOutputArray,
) -> Result<f32>
fn calc_error( &self, data: &Ptr<TrainData>, test: bool, resp: &mut impl ToOutputArray, ) -> Result<f32>
Source§fn predict(
&self,
samples: &impl ToInputArray,
results: &mut impl ToOutputArray,
flags: i32,
) -> Result<f32>
fn predict( &self, samples: &impl ToInputArray, results: &mut impl ToOutputArray, flags: i32, ) -> Result<f32>
Source§fn predict_def(&self, samples: &impl ToInputArray) -> Result<f32>
fn predict_def(&self, samples: &impl ToInputArray) -> Result<f32>
impl Send for EM
Auto Trait Implementations§
impl Freeze for EM
impl RefUnwindSafe for EM
impl !Sync for EM
impl Unpin for EM
impl UnwindSafe for EM
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<Mat> ModifyInplace for Matwhere
Mat: Boxed,
impl<Mat> ModifyInplace for Matwhere
Mat: Boxed,
Source§unsafe fn modify_inplace<Res>(
&mut self,
f: impl FnOnce(&Mat, &mut Mat) -> Res,
) -> Res
unsafe fn modify_inplace<Res>( &mut self, f: impl FnOnce(&Mat, &mut Mat) -> Res, ) -> Res
Mat or another similar object. By passing
a mutable reference to the Mat to this function your closure will get called with the read reference and a write references
to the same Mat. This is unsafe in a general case as it leads to having non-exclusive mutable access to the internal data,
but it can be useful for some performance sensitive operations. One example of an OpenCV function that allows such in-place
modification is imgproc::threshold. Read more