pub struct SVM { /* private fields */ }
Expand description
Implementations§
Source§impl SVM
impl SVM
Sourcepub fn get_default_grid(param_id: i32) -> Result<ParamGrid>
pub fn get_default_grid(param_id: i32) -> Result<ParamGrid>
Generates a grid for %SVM parameters.
§Parameters
- param_id: %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is generated for the parameter with this ID.
The function generates a grid for the specified parameter of the %SVM algorithm. The grid may be passed to the function SVM::trainAuto.
Sourcepub fn get_default_grid_ptr(param_id: i32) -> Result<Ptr<ParamGrid>>
pub fn get_default_grid_ptr(param_id: i32) -> Result<Ptr<ParamGrid>>
Generates a grid for %SVM parameters.
§Parameters
- param_id: %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is generated for the parameter with this ID.
The function generates a grid pointer for the specified parameter of the %SVM algorithm. The grid may be passed to the function SVM::trainAuto.
Trait Implementations§
Source§impl AlgorithmTrait for SVM
impl AlgorithmTrait for SVM
Source§impl AlgorithmTraitConst for SVM
impl AlgorithmTraitConst for SVM
fn as_raw_Algorithm(&self) -> *const c_void
Source§fn write(&self, fs: &mut impl FileStorageTrait) -> Result<()>
fn write(&self, fs: &mut impl FileStorageTrait) -> Result<()>
Stores algorithm parameters in a file storage
Source§fn write_1(&self, fs: &mut impl FileStorageTrait, name: &str) -> Result<()>
fn write_1(&self, fs: &mut impl FileStorageTrait, name: &str) -> Result<()>
Stores algorithm parameters in a file storage Read more
Source§fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
@deprecated Read more
Source§fn write_with_name_def(&self, fs: &Ptr<FileStorage>) -> Result<()>
fn write_with_name_def(&self, fs: &Ptr<FileStorage>) -> Result<()>
👎Deprecated:
§Note
Deprecated: ## Note
This alternative version of AlgorithmTraitConst::write_with_name function uses the following default values for its arguments: Read more
Source§fn empty(&self) -> Result<bool>
fn empty(&self) -> Result<bool>
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
Source§fn save(&self, filename: &str) -> Result<()>
fn save(&self, filename: &str) -> Result<()>
Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
Source§fn get_default_name(&self) -> Result<String>
fn get_default_name(&self) -> Result<String>
Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
Source§impl Boxed for SVM
impl Boxed for SVM
Source§unsafe fn from_raw(ptr: <SVM as OpenCVFromExtern>::ExternReceive) -> Self
unsafe fn from_raw(ptr: <SVM as OpenCVFromExtern>::ExternReceive) -> Self
Wrap the specified raw pointer Read more
Source§fn into_raw(self) -> <SVM as OpenCVTypeExternContainer>::ExternSendMut
fn into_raw(self) -> <SVM as OpenCVTypeExternContainer>::ExternSendMut
Return the underlying raw pointer while consuming this wrapper. Read more
Source§fn as_raw(&self) -> <SVM as OpenCVTypeExternContainer>::ExternSend
fn as_raw(&self) -> <SVM as OpenCVTypeExternContainer>::ExternSend
Return the underlying raw pointer. Read more
Source§fn as_raw_mut(&mut self) -> <SVM as OpenCVTypeExternContainer>::ExternSendMut
fn as_raw_mut(&mut self) -> <SVM as OpenCVTypeExternContainer>::ExternSendMut
Return the underlying mutable raw pointer Read more
Source§impl SVMTrait for SVM
impl SVMTrait for SVM
fn as_raw_mut_SVM(&mut self) -> *mut c_void
Source§fn set_type(&mut self, val: i32) -> Result<()>
fn set_type(&mut self, val: i32) -> Result<()>
Type of a %SVM formulation.
See SVM::Types. Default value is SVM::C_SVC. Read more
Source§fn set_gamma(&mut self, val: f64) -> Result<()>
fn set_gamma(&mut self, val: f64) -> Result<()>
Parameter inline formula of a kernel function.
For SVM::POLY, SVM::RBF, SVM::SIGMOID or SVM::CHI2. Default value is 1. Read more
Source§fn set_coef0(&mut self, val: f64) -> Result<()>
fn set_coef0(&mut self, val: f64) -> Result<()>
Parameter coef0 of a kernel function.
For SVM::POLY or SVM::SIGMOID. Default value is 0. Read more
Source§fn set_degree(&mut self, val: f64) -> Result<()>
fn set_degree(&mut self, val: f64) -> Result<()>
Parameter degree of a kernel function.
For SVM::POLY. Default value is 0. Read more
Source§fn set_c(&mut self, val: f64) -> Result<()>
fn set_c(&mut self, val: f64) -> Result<()>
Parameter C of a %SVM optimization problem.
For SVM::C_SVC, SVM::EPS_SVR or SVM::NU_SVR. Default value is 0. Read more
Source§fn set_nu(&mut self, val: f64) -> Result<()>
fn set_nu(&mut self, val: f64) -> Result<()>
Parameter inline formula of a %SVM optimization problem.
For SVM::NU_SVC, SVM::ONE_CLASS or SVM::NU_SVR. Default value is 0. Read more
Source§fn set_p(&mut self, val: f64) -> Result<()>
fn set_p(&mut self, val: f64) -> Result<()>
Parameter inline formula of a %SVM optimization problem.
For SVM::EPS_SVR. Default value is 0. Read more
Source§fn set_class_weights(&mut self, val: &impl MatTraitConst) -> Result<()>
fn set_class_weights(&mut self, val: &impl MatTraitConst) -> Result<()>
Optional weights in the SVM::C_SVC problem, assigned to particular classes.
They are multiplied by C so the parameter C of class i becomes
classWeights(i) * C
. Thus
these weights affect the misclassification penalty for different classes. The larger weight,
the larger penalty on misclassification of data from the corresponding class. Default value is
empty Mat. Read moreSource§fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
Termination criteria of the iterative %SVM training procedure which solves a partial
case of constrained quadratic optimization problem.
You can specify tolerance and/or the maximum number of iterations. Default value is
TermCriteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, FLT_EPSILON )
; Read moreSource§fn set_kernel(&mut self, kernel_type: i32) -> Result<()>
fn set_kernel(&mut self, kernel_type: i32) -> Result<()>
Initialize with one of predefined kernels.
See SVM::KernelTypes.
Source§fn set_custom_kernel(&mut self, _kernel: &Ptr<SVM_Kernel>) -> Result<()>
fn set_custom_kernel(&mut self, _kernel: &Ptr<SVM_Kernel>) -> Result<()>
Initialize with custom kernel.
See SVM::Kernel class for implementation details
Source§fn train_auto(
&mut self,
data: &Ptr<TrainData>,
k_fold: i32,
cgrid: impl ParamGridTrait,
gamma_grid: impl ParamGridTrait,
p_grid: impl ParamGridTrait,
nu_grid: impl ParamGridTrait,
coeff_grid: impl ParamGridTrait,
degree_grid: impl ParamGridTrait,
balanced: bool,
) -> Result<bool>
fn train_auto( &mut self, data: &Ptr<TrainData>, k_fold: i32, cgrid: impl ParamGridTrait, gamma_grid: impl ParamGridTrait, p_grid: impl ParamGridTrait, nu_grid: impl ParamGridTrait, coeff_grid: impl ParamGridTrait, degree_grid: impl ParamGridTrait, balanced: bool, ) -> Result<bool>
Trains an %SVM with optimal parameters. Read more
Source§fn train_auto_def(&mut self, data: &Ptr<TrainData>) -> Result<bool>
fn train_auto_def(&mut self, data: &Ptr<TrainData>) -> Result<bool>
Trains an %SVM with optimal parameters. Read more
Source§fn train_auto_with_data(
&mut self,
samples: &impl ToInputArray,
layout: i32,
responses: &impl ToInputArray,
k_fold: i32,
cgrid: Ptr<ParamGrid>,
gamma_grid: Ptr<ParamGrid>,
p_grid: Ptr<ParamGrid>,
nu_grid: Ptr<ParamGrid>,
coeff_grid: Ptr<ParamGrid>,
degree_grid: Ptr<ParamGrid>,
balanced: bool,
) -> Result<bool>
fn train_auto_with_data( &mut self, samples: &impl ToInputArray, layout: i32, responses: &impl ToInputArray, k_fold: i32, cgrid: Ptr<ParamGrid>, gamma_grid: Ptr<ParamGrid>, p_grid: Ptr<ParamGrid>, nu_grid: Ptr<ParamGrid>, coeff_grid: Ptr<ParamGrid>, degree_grid: Ptr<ParamGrid>, balanced: bool, ) -> Result<bool>
Trains an %SVM with optimal parameters Read more
Source§fn train_auto_with_data_def(
&mut self,
samples: &impl ToInputArray,
layout: i32,
responses: &impl ToInputArray,
) -> Result<bool>
fn train_auto_with_data_def( &mut self, samples: &impl ToInputArray, layout: i32, responses: &impl ToInputArray, ) -> Result<bool>
Trains an %SVM with optimal parameters Read more
Source§impl SVMTraitConst for SVM
impl SVMTraitConst for SVM
fn as_raw_SVM(&self) -> *const c_void
Source§fn get_type(&self) -> Result<i32>
fn get_type(&self) -> Result<i32>
Type of a %SVM formulation.
See SVM::Types. Default value is SVM::C_SVC. Read more
Source§fn get_gamma(&self) -> Result<f64>
fn get_gamma(&self) -> Result<f64>
Parameter inline formula of a kernel function.
For SVM::POLY, SVM::RBF, SVM::SIGMOID or SVM::CHI2. Default value is 1. Read more
Source§fn get_coef0(&self) -> Result<f64>
fn get_coef0(&self) -> Result<f64>
Parameter coef0 of a kernel function.
For SVM::POLY or SVM::SIGMOID. Default value is 0. Read more
Source§fn get_degree(&self) -> Result<f64>
fn get_degree(&self) -> Result<f64>
Parameter degree of a kernel function.
For SVM::POLY. Default value is 0. Read more
Source§fn get_c(&self) -> Result<f64>
fn get_c(&self) -> Result<f64>
Parameter C of a %SVM optimization problem.
For SVM::C_SVC, SVM::EPS_SVR or SVM::NU_SVR. Default value is 0. Read more
Source§fn get_nu(&self) -> Result<f64>
fn get_nu(&self) -> Result<f64>
Parameter inline formula of a %SVM optimization problem.
For SVM::NU_SVC, SVM::ONE_CLASS or SVM::NU_SVR. Default value is 0. Read more
Source§fn get_p(&self) -> Result<f64>
fn get_p(&self) -> Result<f64>
Parameter inline formula of a %SVM optimization problem.
For SVM::EPS_SVR. Default value is 0. Read more
Source§fn get_class_weights(&self) -> Result<Mat>
fn get_class_weights(&self) -> Result<Mat>
Optional weights in the SVM::C_SVC problem, assigned to particular classes.
They are multiplied by C so the parameter C of class i becomes
classWeights(i) * C
. Thus
these weights affect the misclassification penalty for different classes. The larger weight,
the larger penalty on misclassification of data from the corresponding class. Default value is
empty Mat. Read moreSource§fn get_term_criteria(&self) -> Result<TermCriteria>
fn get_term_criteria(&self) -> Result<TermCriteria>
Termination criteria of the iterative %SVM training procedure which solves a partial
case of constrained quadratic optimization problem.
You can specify tolerance and/or the maximum number of iterations. Default value is
TermCriteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, FLT_EPSILON )
; Read moreSource§fn get_kernel_type(&self) -> Result<i32>
fn get_kernel_type(&self) -> Result<i32>
Type of a %SVM kernel.
See SVM::KernelTypes. Default value is SVM::RBF.
Source§fn get_uncompressed_support_vectors(&self) -> Result<Mat>
fn get_uncompressed_support_vectors(&self) -> Result<Mat>
Retrieves all the uncompressed support vectors of a linear %SVM Read more
Source§fn get_decision_function(
&self,
i: i32,
alpha: &mut impl ToOutputArray,
svidx: &mut impl ToOutputArray,
) -> Result<f64>
fn get_decision_function( &self, i: i32, alpha: &mut impl ToOutputArray, svidx: &mut impl ToOutputArray, ) -> Result<f64>
Retrieves the decision function Read more
Source§impl StatModelTrait for SVM
impl StatModelTrait for SVM
fn as_raw_mut_StatModel(&mut self) -> *mut c_void
Source§fn train_with_data(
&mut self,
train_data: &Ptr<TrainData>,
flags: i32,
) -> Result<bool>
fn train_with_data( &mut self, train_data: &Ptr<TrainData>, flags: i32, ) -> Result<bool>
Trains the statistical model Read more
Source§fn train_with_data_def(&mut self, train_data: &Ptr<TrainData>) -> Result<bool>
fn train_with_data_def(&mut self, train_data: &Ptr<TrainData>) -> Result<bool>
Trains the statistical model Read more
Source§fn train(
&mut self,
samples: &impl ToInputArray,
layout: i32,
responses: &impl ToInputArray,
) -> Result<bool>
fn train( &mut self, samples: &impl ToInputArray, layout: i32, responses: &impl ToInputArray, ) -> Result<bool>
Trains the statistical model Read more
Source§impl StatModelTraitConst for SVM
impl StatModelTraitConst for SVM
fn as_raw_StatModel(&self) -> *const c_void
Source§fn get_var_count(&self) -> Result<i32>
fn get_var_count(&self) -> Result<i32>
Returns the number of variables in training samples
fn empty(&self) -> Result<bool>
Source§fn is_trained(&self) -> Result<bool>
fn is_trained(&self) -> Result<bool>
Returns true if the model is trained
Source§fn is_classifier(&self) -> Result<bool>
fn is_classifier(&self) -> Result<bool>
Returns true if the model is classifier
Source§fn calc_error(
&self,
data: &Ptr<TrainData>,
test: bool,
resp: &mut impl ToOutputArray,
) -> Result<f32>
fn calc_error( &self, data: &Ptr<TrainData>, test: bool, resp: &mut impl ToOutputArray, ) -> Result<f32>
Computes error on the training or test dataset Read more
Source§fn predict(
&self,
samples: &impl ToInputArray,
results: &mut impl ToOutputArray,
flags: i32,
) -> Result<f32>
fn predict( &self, samples: &impl ToInputArray, results: &mut impl ToOutputArray, flags: i32, ) -> Result<f32>
Predicts response(s) for the provided sample(s) Read more
Source§fn predict_def(&self, samples: &impl ToInputArray) -> Result<f32>
fn predict_def(&self, samples: &impl ToInputArray) -> Result<f32>
Predicts response(s) for the provided sample(s) Read more
impl Send for SVM
Auto Trait Implementations§
impl Freeze for SVM
impl RefUnwindSafe for SVM
impl !Sync for SVM
impl Unpin for SVM
impl UnwindSafe for SVM
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<Mat> ModifyInplace for Matwhere
Mat: Boxed,
impl<Mat> ModifyInplace for Matwhere
Mat: Boxed,
Source§unsafe fn modify_inplace<Res>(
&mut self,
f: impl FnOnce(&Mat, &mut Mat) -> Res,
) -> Res
unsafe fn modify_inplace<Res>( &mut self, f: impl FnOnce(&Mat, &mut Mat) -> Res, ) -> Res
Helper function to call OpenCV functions that allow in-place modification of a
Mat
or another similar object. By passing
a mutable reference to the Mat
to this function your closure will get called with the read reference and a write references
to the same Mat
. This is unsafe in a general case as it leads to having non-exclusive mutable access to the internal data,
but it can be useful for some performance sensitive operations. One example of an OpenCV function that allows such in-place
modification is imgproc::threshold
. Read more