Trait KalmanFilterTraitConst

Source
pub trait KalmanFilterTraitConst {
Show 16 methods // Required method fn as_raw_KalmanFilter(&self) -> *const c_void; // Provided methods fn state_pre(&self) -> Mat { ... } fn state_post(&self) -> Mat { ... } fn transition_matrix(&self) -> Mat { ... } fn control_matrix(&self) -> Mat { ... } fn measurement_matrix(&self) -> Mat { ... } fn process_noise_cov(&self) -> Mat { ... } fn measurement_noise_cov(&self) -> Mat { ... } fn error_cov_pre(&self) -> Mat { ... } fn gain(&self) -> Mat { ... } fn error_cov_post(&self) -> Mat { ... } fn temp1(&self) -> Mat { ... } fn temp2(&self) -> Mat { ... } fn temp3(&self) -> Mat { ... } fn temp4(&self) -> Mat { ... } fn temp5(&self) -> Mat { ... }
}
Expand description

Constant methods for crate::video::KalmanFilter

Required Methods§

Provided Methods§

Source

fn state_pre(&self) -> Mat

predicted state (x’(k)): x(k)=Ax(k-1)+Bu(k)

Source

fn state_post(&self) -> Mat

corrected state (x(k)): x(k)=x’(k)+K(k)(z(k)-Hx’(k))

Source

fn transition_matrix(&self) -> Mat

state transition matrix (A)

Source

fn control_matrix(&self) -> Mat

control matrix (B) (not used if there is no control)

Source

fn measurement_matrix(&self) -> Mat

measurement matrix (H)

Source

fn process_noise_cov(&self) -> Mat

process noise covariance matrix (Q)

Source

fn measurement_noise_cov(&self) -> Mat

measurement noise covariance matrix (R)

Source

fn error_cov_pre(&self) -> Mat

priori error estimate covariance matrix (P’(k)): P’(k)=A*P(k-1)*At + Q)

Source

fn gain(&self) -> Mat

Kalman gain matrix (K(k)): K(k)=P’(k)Htinv(H*P’(k)*Ht+R)

Source

fn error_cov_post(&self) -> Mat

posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P’(k)

Source

fn temp1(&self) -> Mat

Source

fn temp2(&self) -> Mat

Source

fn temp3(&self) -> Mat

Source

fn temp4(&self) -> Mat

Source

fn temp5(&self) -> Mat

Implementors§