pub trait StatModelTrait: AlgorithmTrait + StatModelTraitConst {
// Required method
fn as_raw_mut_StatModel(&mut self) -> *mut c_void;
// Provided methods
fn train_with_data(
&mut self,
train_data: &Ptr<TrainData>,
flags: i32,
) -> Result<bool> { ... }
fn train_with_data_def(
&mut self,
train_data: &Ptr<TrainData>,
) -> Result<bool> { ... }
fn train(
&mut self,
samples: &impl ToInputArray,
layout: i32,
responses: &impl ToInputArray,
) -> Result<bool> { ... }
}
Expand description
Mutable methods for crate::ml::StatModel
Required Methods§
fn as_raw_mut_StatModel(&mut self) -> *mut c_void
Provided Methods§
Sourcefn train_with_data(
&mut self,
train_data: &Ptr<TrainData>,
flags: i32,
) -> Result<bool>
fn train_with_data( &mut self, train_data: &Ptr<TrainData>, flags: i32, ) -> Result<bool>
Trains the statistical model
§Parameters
- trainData: training data that can be loaded from file using TrainData::loadFromCSV or created with TrainData::create.
- flags: optional flags, depending on the model. Some of the models can be updated with the new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
§C++ default parameters
- flags: 0
Sourcefn train_with_data_def(&mut self, train_data: &Ptr<TrainData>) -> Result<bool>
fn train_with_data_def(&mut self, train_data: &Ptr<TrainData>) -> Result<bool>
Trains the statistical model
§Parameters
- trainData: training data that can be loaded from file using TrainData::loadFromCSV or created with TrainData::create.
- flags: optional flags, depending on the model. Some of the models can be updated with the new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
§Note
This alternative version of StatModelTrait::train_with_data function uses the following default values for its arguments:
- flags: 0
Sourcefn train(
&mut self,
samples: &impl ToInputArray,
layout: i32,
responses: &impl ToInputArray,
) -> Result<bool>
fn train( &mut self, samples: &impl ToInputArray, layout: i32, responses: &impl ToInputArray, ) -> Result<bool>
Trains the statistical model
§Parameters
- samples: training samples
- layout: See ml::SampleTypes.
- responses: vector of responses associated with the training samples.
Dyn Compatibility§
This trait is not dyn compatible.
In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.