opencv::prelude

Trait StatModelTrait

Source
pub trait StatModelTrait: AlgorithmTrait + StatModelTraitConst {
    // Required method
    fn as_raw_mut_StatModel(&mut self) -> *mut c_void;

    // Provided methods
    fn train_with_data(
        &mut self,
        train_data: &Ptr<TrainData>,
        flags: i32,
    ) -> Result<bool> { ... }
    fn train_with_data_def(
        &mut self,
        train_data: &Ptr<TrainData>,
    ) -> Result<bool> { ... }
    fn train(
        &mut self,
        samples: &impl ToInputArray,
        layout: i32,
        responses: &impl ToInputArray,
    ) -> Result<bool> { ... }
}
Expand description

Mutable methods for crate::ml::StatModel

Required Methods§

Provided Methods§

Source

fn train_with_data( &mut self, train_data: &Ptr<TrainData>, flags: i32, ) -> Result<bool>

Trains the statistical model

§Parameters
  • trainData: training data that can be loaded from file using TrainData::loadFromCSV or created with TrainData::create.
  • flags: optional flags, depending on the model. Some of the models can be updated with the new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
§C++ default parameters
  • flags: 0
Source

fn train_with_data_def(&mut self, train_data: &Ptr<TrainData>) -> Result<bool>

Trains the statistical model

§Parameters
  • trainData: training data that can be loaded from file using TrainData::loadFromCSV or created with TrainData::create.
  • flags: optional flags, depending on the model. Some of the models can be updated with the new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
§Note

This alternative version of StatModelTrait::train_with_data function uses the following default values for its arguments:

  • flags: 0
Source

fn train( &mut self, samples: &impl ToInputArray, layout: i32, responses: &impl ToInputArray, ) -> Result<bool>

Trains the statistical model

§Parameters
  • samples: training samples
  • layout: See ml::SampleTypes.
  • responses: vector of responses associated with the training samples.

Dyn Compatibility§

This trait is not dyn compatible.

In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

Implementors§

Source§

impl StatModelTrait for BoxedRefMut<'_, ANN_MLP>

Source§

impl StatModelTrait for BoxedRefMut<'_, Boost>

Source§

impl StatModelTrait for BoxedRefMut<'_, DTrees>

Source§

impl StatModelTrait for BoxedRefMut<'_, EM>

Source§

impl StatModelTrait for BoxedRefMut<'_, KNearest>

Source§

impl StatModelTrait for BoxedRefMut<'_, LogisticRegression>

Source§

impl StatModelTrait for BoxedRefMut<'_, NormalBayesClassifier>

Source§

impl StatModelTrait for BoxedRefMut<'_, RTrees>

Source§

impl StatModelTrait for BoxedRefMut<'_, SVM>

Source§

impl StatModelTrait for BoxedRefMut<'_, SVMSGD>

Source§

impl StatModelTrait for BoxedRefMut<'_, StatModel>

Source§

impl StatModelTrait for Ptr<ANN_MLP>

Source§

impl StatModelTrait for Ptr<Boost>

Source§

impl StatModelTrait for Ptr<DTrees>

Source§

impl StatModelTrait for Ptr<EM>

Source§

impl StatModelTrait for Ptr<KNearest>

Source§

impl StatModelTrait for Ptr<LogisticRegression>

Source§

impl StatModelTrait for Ptr<NormalBayesClassifier>

Source§

impl StatModelTrait for Ptr<RTrees>

Source§

impl StatModelTrait for Ptr<SVM>

Source§

impl StatModelTrait for Ptr<SVMSGD>

Source§

impl StatModelTrait for Ptr<StatModel>

Source§

impl StatModelTrait for ANN_MLP

Source§

impl StatModelTrait for Boost

Source§

impl StatModelTrait for DTrees

Source§

impl StatModelTrait for EM

Source§

impl StatModelTrait for KNearest

Source§

impl StatModelTrait for LogisticRegression

Source§

impl StatModelTrait for NormalBayesClassifier

Source§

impl StatModelTrait for RTrees

Source§

impl StatModelTrait for SVM

Source§

impl StatModelTrait for SVMSGD

Source§

impl StatModelTrait for StatModel