pub struct KNearest { /* private fields */ }
Expand description
Implementations§
source§impl KNearest
impl KNearest
sourcepub fn create() -> Result<Ptr<KNearest>>
pub fn create() -> Result<Ptr<KNearest>>
Creates the empty model
The static method creates empty %KNearest classifier. It should be then trained using StatModel::train method.
sourcepub fn load(filepath: &str) -> Result<Ptr<KNearest>>
pub fn load(filepath: &str) -> Result<Ptr<KNearest>>
Loads and creates a serialized knearest from a file
Use KNearest::save to serialize and store an KNearest to disk. Load the KNearest from this file again, by calling this function with the path to the file.
§Parameters
- filepath: path to serialized KNearest
Trait Implementations§
source§impl AlgorithmTrait for KNearest
impl AlgorithmTrait for KNearest
source§impl AlgorithmTraitConst for KNearest
impl AlgorithmTraitConst for KNearest
fn as_raw_Algorithm(&self) -> *const c_void
source§fn write(&self, fs: &mut impl FileStorageTrait) -> Result<()>
fn write(&self, fs: &mut impl FileStorageTrait) -> Result<()>
Stores algorithm parameters in a file storage
source§fn write_1(&self, fs: &mut impl FileStorageTrait, name: &str) -> Result<()>
fn write_1(&self, fs: &mut impl FileStorageTrait, name: &str) -> Result<()>
Stores algorithm parameters in a file storage Read more
source§fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
@deprecated Read more
source§fn write_with_name_def(&self, fs: &Ptr<FileStorage>) -> Result<()>
fn write_with_name_def(&self, fs: &Ptr<FileStorage>) -> Result<()>
👎Deprecated:
§Note
Deprecated: ## Note
This alternative version of AlgorithmTraitConst::write_with_name function uses the following default values for its arguments: Read more
source§fn empty(&self) -> Result<bool>
fn empty(&self) -> Result<bool>
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
source§fn save(&self, filename: &str) -> Result<()>
fn save(&self, filename: &str) -> Result<()>
Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
source§fn get_default_name(&self) -> Result<String>
fn get_default_name(&self) -> Result<String>
Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
source§impl Boxed for KNearest
impl Boxed for KNearest
source§unsafe fn from_raw(ptr: <KNearest as OpenCVFromExtern>::ExternReceive) -> Self
unsafe fn from_raw(ptr: <KNearest as OpenCVFromExtern>::ExternReceive) -> Self
Wrap the specified raw pointer Read more
source§fn into_raw(self) -> <KNearest as OpenCVTypeExternContainer>::ExternSendMut
fn into_raw(self) -> <KNearest as OpenCVTypeExternContainer>::ExternSendMut
Return the underlying raw pointer while consuming this wrapper. Read more
source§fn as_raw(&self) -> <KNearest as OpenCVTypeExternContainer>::ExternSend
fn as_raw(&self) -> <KNearest as OpenCVTypeExternContainer>::ExternSend
Return the underlying raw pointer. Read more
source§fn as_raw_mut(
&mut self,
) -> <KNearest as OpenCVTypeExternContainer>::ExternSendMut
fn as_raw_mut( &mut self, ) -> <KNearest as OpenCVTypeExternContainer>::ExternSendMut
Return the underlying mutable raw pointer Read more
source§impl KNearestTrait for KNearest
impl KNearestTrait for KNearest
fn as_raw_mut_KNearest(&mut self) -> *mut c_void
source§fn set_default_k(&mut self, val: i32) -> Result<()>
fn set_default_k(&mut self, val: i32) -> Result<()>
Default number of neighbors to use in predict method. Read more
source§impl KNearestTraitConst for KNearest
impl KNearestTraitConst for KNearest
fn as_raw_KNearest(&self) -> *const c_void
source§fn get_default_k(&self) -> Result<i32>
fn get_default_k(&self) -> Result<i32>
Default number of neighbors to use in predict method. Read more
source§fn get_is_classifier(&self) -> Result<bool>
fn get_is_classifier(&self) -> Result<bool>
Whether classification or regression model should be trained. Read more
source§fn get_algorithm_type(&self) -> Result<i32>
fn get_algorithm_type(&self) -> Result<i32>
%Algorithm type, one of KNearest::Types. Read more
source§fn find_nearest(
&self,
samples: &impl ToInputArray,
k: i32,
results: &mut impl ToOutputArray,
neighbor_responses: &mut impl ToOutputArray,
dist: &mut impl ToOutputArray,
) -> Result<f32>
fn find_nearest( &self, samples: &impl ToInputArray, k: i32, results: &mut impl ToOutputArray, neighbor_responses: &mut impl ToOutputArray, dist: &mut impl ToOutputArray, ) -> Result<f32>
Finds the neighbors and predicts responses for input vectors. Read more
source§fn find_nearest_def(
&self,
samples: &impl ToInputArray,
k: i32,
results: &mut impl ToOutputArray,
) -> Result<f32>
fn find_nearest_def( &self, samples: &impl ToInputArray, k: i32, results: &mut impl ToOutputArray, ) -> Result<f32>
Finds the neighbors and predicts responses for input vectors. Read more
source§impl StatModelTrait for KNearest
impl StatModelTrait for KNearest
fn as_raw_mut_StatModel(&mut self) -> *mut c_void
source§fn train_with_data(
&mut self,
train_data: &Ptr<TrainData>,
flags: i32,
) -> Result<bool>
fn train_with_data( &mut self, train_data: &Ptr<TrainData>, flags: i32, ) -> Result<bool>
Trains the statistical model Read more
source§fn train_with_data_def(&mut self, train_data: &Ptr<TrainData>) -> Result<bool>
fn train_with_data_def(&mut self, train_data: &Ptr<TrainData>) -> Result<bool>
Trains the statistical model Read more
source§fn train(
&mut self,
samples: &impl ToInputArray,
layout: i32,
responses: &impl ToInputArray,
) -> Result<bool>
fn train( &mut self, samples: &impl ToInputArray, layout: i32, responses: &impl ToInputArray, ) -> Result<bool>
Trains the statistical model Read more
source§impl StatModelTraitConst for KNearest
impl StatModelTraitConst for KNearest
fn as_raw_StatModel(&self) -> *const c_void
source§fn get_var_count(&self) -> Result<i32>
fn get_var_count(&self) -> Result<i32>
Returns the number of variables in training samples
fn empty(&self) -> Result<bool>
source§fn is_trained(&self) -> Result<bool>
fn is_trained(&self) -> Result<bool>
Returns true if the model is trained
source§fn is_classifier(&self) -> Result<bool>
fn is_classifier(&self) -> Result<bool>
Returns true if the model is classifier
source§fn calc_error(
&self,
data: &Ptr<TrainData>,
test: bool,
resp: &mut impl ToOutputArray,
) -> Result<f32>
fn calc_error( &self, data: &Ptr<TrainData>, test: bool, resp: &mut impl ToOutputArray, ) -> Result<f32>
Computes error on the training or test dataset Read more
source§fn predict(
&self,
samples: &impl ToInputArray,
results: &mut impl ToOutputArray,
flags: i32,
) -> Result<f32>
fn predict( &self, samples: &impl ToInputArray, results: &mut impl ToOutputArray, flags: i32, ) -> Result<f32>
Predicts response(s) for the provided sample(s) Read more
source§fn predict_def(&self, samples: &impl ToInputArray) -> Result<f32>
fn predict_def(&self, samples: &impl ToInputArray) -> Result<f32>
Predicts response(s) for the provided sample(s) Read more
impl Send for KNearest
Auto Trait Implementations§
impl Freeze for KNearest
impl RefUnwindSafe for KNearest
impl !Sync for KNearest
impl Unpin for KNearest
impl UnwindSafe for KNearest
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<Mat> ModifyInplace for Matwhere
Mat: Boxed,
impl<Mat> ModifyInplace for Matwhere
Mat: Boxed,
source§unsafe fn modify_inplace<Res>(
&mut self,
f: impl FnOnce(&Mat, &mut Mat) -> Res,
) -> Res
unsafe fn modify_inplace<Res>( &mut self, f: impl FnOnce(&Mat, &mut Mat) -> Res, ) -> Res
Helper function to call OpenCV functions that allow in-place modification of a
Mat
or another similar object. By passing
a mutable reference to the Mat
to this function your closure will get called with the read reference and a write references
to the same Mat
. This is unsafe in a general case as it leads to having non-exclusive mutable access to the internal data,
but it can be useful for some performance sensitive operations. One example of an OpenCV function that allows such in-place
modification is imgproc::threshold
. Read more