pub struct CascadeClassifier { /* private fields */ }
Expand description

@example samples/cpp/facedetect.cpp This program demonstrates usage of the Cascade classifier class \image html Cascade_Classifier_Tutorial_Result_Haar.jpg “Sample screenshot” width=321 height=254

Cascade classifier class for object detection.

Implementations§

source§

impl CascadeClassifier

source

pub fn default() -> Result<CascadeClassifier>

source

pub fn new(filename: &str) -> Result<CascadeClassifier>

Loads a classifier from a file.

§Parameters
  • filename: Name of the file from which the classifier is loaded.
source

pub fn convert(oldcascade: &str, newcascade: &str) -> Result<bool>

Trait Implementations§

source§

impl Boxed for CascadeClassifier

source§

unsafe fn from_raw( ptr: <CascadeClassifier as OpenCVType<'_>>::ExternReceive ) -> Self

Wrap the specified raw pointer Read more
source§

fn into_raw( self ) -> <CascadeClassifier as OpenCVTypeExternContainer>::ExternSendMut

Return the underlying raw pointer while consuming this wrapper. Read more
source§

fn as_raw(&self) -> <CascadeClassifier as OpenCVTypeExternContainer>::ExternSend

Return the underlying raw pointer. Read more
source§

fn as_raw_mut( &mut self ) -> <CascadeClassifier as OpenCVTypeExternContainer>::ExternSendMut

Return the underlying mutable raw pointer Read more
source§

impl CascadeClassifierTrait for CascadeClassifier

source§

fn as_raw_mut_CascadeClassifier(&mut self) -> *mut c_void

source§

fn cc(&mut self) -> Ptr<BaseCascadeClassifier>

source§

fn set_cc(&mut self, val: Ptr<BaseCascadeClassifier>)

source§

fn load(&mut self, filename: &str) -> Result<bool>

Loads a classifier from a file. Read more
source§

fn read(&mut self, node: &impl FileNodeTraitConst) -> Result<bool>

Reads a classifier from a FileStorage node. Read more
source§

fn detect_multi_scale( &mut self, image: &impl ToInputArray, objects: &mut Vector<Rect>, scale_factor: f64, min_neighbors: i32, flags: i32, min_size: Size, max_size: Size ) -> Result<()>

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles. Read more
source§

fn detect_multi_scale_def( &mut self, image: &impl ToInputArray, objects: &mut Vector<Rect> ) -> Result<()>

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles. Read more
source§

fn detect_multi_scale2( &mut self, image: &impl ToInputArray, objects: &mut Vector<Rect>, num_detections: &mut Vector<i32>, scale_factor: f64, min_neighbors: i32, flags: i32, min_size: Size, max_size: Size ) -> Result<()>

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles. Read more
source§

fn detect_multi_scale2_def( &mut self, image: &impl ToInputArray, objects: &mut Vector<Rect>, num_detections: &mut Vector<i32> ) -> Result<()>

@overload Read more
source§

fn detect_multi_scale3( &mut self, image: &impl ToInputArray, objects: &mut Vector<Rect>, reject_levels: &mut Vector<i32>, level_weights: &mut Vector<f64>, scale_factor: f64, min_neighbors: i32, flags: i32, min_size: Size, max_size: Size, output_reject_levels: bool ) -> Result<()>

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles. Read more
source§

fn detect_multi_scale3_def( &mut self, image: &impl ToInputArray, objects: &mut Vector<Rect>, reject_levels: &mut Vector<i32>, level_weights: &mut Vector<f64> ) -> Result<()>

@overload This function allows you to retrieve the final stage decision certainty of classification. For this, one needs to set outputRejectLevels on true and provide the rejectLevels and levelWeights parameter. For each resulting detection, levelWeights will then contain the certainty of classification at the final stage. This value can then be used to separate strong from weaker classifications. Read more
source§

fn get_old_cascade(&mut self) -> Result<*mut c_void>

source§

fn set_mask_generator( &mut self, mask_generator: &Ptr<BaseCascadeClassifier_MaskGenerator> ) -> Result<()>

source§

fn get_mask_generator( &mut self ) -> Result<Ptr<BaseCascadeClassifier_MaskGenerator>>

source§

impl CascadeClassifierTraitConst for CascadeClassifier

source§

fn as_raw_CascadeClassifier(&self) -> *const c_void

source§

fn empty(&self) -> Result<bool>

Checks whether the classifier has been loaded.
source§

fn is_old_format_cascade(&self) -> Result<bool>

source§

fn get_original_window_size(&self) -> Result<Size>

source§

fn get_feature_type(&self) -> Result<i32>

source§

impl Debug for CascadeClassifier

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Drop for CascadeClassifier

source§

fn drop(&mut self)

Executes the destructor for this type. Read more
source§

impl Send for CascadeClassifier

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.