Struct opencv::ml::SVM

source ·
pub struct SVM { /* private fields */ }
Expand description

Support Vector Machines.

See also

[ml_intro_svm]

Implementations§

source§

impl SVM

source

pub fn get_default_grid(param_id: i32) -> Result<ParamGrid>

Generates a grid for %SVM parameters.

Parameters
  • param_id: %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is generated for the parameter with this ID.

The function generates a grid for the specified parameter of the %SVM algorithm. The grid may be passed to the function SVM::trainAuto.

source

pub fn get_default_grid_ptr(param_id: i32) -> Result<Ptr<ParamGrid>>

Generates a grid for %SVM parameters.

Parameters
  • param_id: %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is generated for the parameter with this ID.

The function generates a grid pointer for the specified parameter of the %SVM algorithm. The grid may be passed to the function SVM::trainAuto.

source

pub fn create() -> Result<Ptr<SVM>>

Creates empty model. Use StatModel::train to train the model. Since %SVM has several parameters, you may want to find the best parameters for your problem, it can be done with SVM::trainAuto.

source

pub fn load(filepath: &str) -> Result<Ptr<SVM>>

Loads and creates a serialized svm from a file

Use SVM::save to serialize and store an SVM to disk. Load the SVM from this file again, by calling this function with the path to the file.

Parameters
  • filepath: path to serialized svm

Trait Implementations§

source§

impl AlgorithmTrait for SVM

source§

fn as_raw_mut_Algorithm(&mut self) -> *mut c_void

source§

fn clear(&mut self) -> Result<()>

Clears the algorithm state
source§

fn read(&mut self, fn_: &FileNode) -> Result<()>

Reads algorithm parameters from a file storage
source§

impl AlgorithmTraitConst for SVM

source§

fn as_raw_Algorithm(&self) -> *const c_void

source§

fn write(&self, fs: &mut FileStorage) -> Result<()>

Stores algorithm parameters in a file storage
source§

fn write_1(&self, fs: &mut FileStorage, name: &str) -> Result<()>

Stores algorithm parameters in a file storage Read more
source§

fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>

@deprecated Read more
source§

fn write_with_name_def(&self, fs: &Ptr<FileStorage>) -> Result<()>

👎Deprecated:

Note

Deprecated: ## Note This alternative version of AlgorithmTraitConst::write_with_name function uses the following default values for its arguments: Read more
source§

fn empty(&self) -> Result<bool>

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
source§

fn save(&self, filename: &str) -> Result<()>

Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
source§

fn get_default_name(&self) -> Result<String>

Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
source§

impl Boxed for SVM

source§

unsafe fn from_raw(ptr: *mut c_void) -> Self

Wrap the specified raw pointer Read more
source§

fn into_raw(self) -> *mut c_void

Return an the underlying raw pointer while consuming this wrapper. Read more
source§

fn as_raw(&self) -> *const c_void

Return the underlying raw pointer. Read more
source§

fn as_raw_mut(&mut self) -> *mut c_void

Return the underlying mutable raw pointer Read more
source§

impl Debug for SVM

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Drop for SVM

source§

fn drop(&mut self)

Executes the destructor for this type. Read more
source§

impl From<SVM> for Algorithm

source§

fn from(s: SVM) -> Self

Converts to this type from the input type.
source§

impl From<SVM> for StatModel

source§

fn from(s: SVM) -> Self

Converts to this type from the input type.
source§

impl SVMTrait for SVM

source§

fn as_raw_mut_SVM(&mut self) -> *mut c_void

source§

fn set_type(&mut self, val: i32) -> Result<()>

Type of a %SVM formulation. See SVM::Types. Default value is SVM::C_SVC. Read more
source§

fn set_gamma(&mut self, val: f64) -> Result<()>

Parameter inline formula of a kernel function. For SVM::POLY, SVM::RBF, SVM::SIGMOID or SVM::CHI2. Default value is 1. Read more
source§

fn set_coef0(&mut self, val: f64) -> Result<()>

Parameter coef0 of a kernel function. For SVM::POLY or SVM::SIGMOID. Default value is 0. Read more
source§

fn set_degree(&mut self, val: f64) -> Result<()>

Parameter degree of a kernel function. For SVM::POLY. Default value is 0. Read more
source§

fn set_c(&mut self, val: f64) -> Result<()>

Parameter C of a %SVM optimization problem. For SVM::C_SVC, SVM::EPS_SVR or SVM::NU_SVR. Default value is 0. Read more
source§

fn set_nu(&mut self, val: f64) -> Result<()>

Parameter inline formula of a %SVM optimization problem. For SVM::NU_SVC, SVM::ONE_CLASS or SVM::NU_SVR. Default value is 0. Read more
source§

fn set_p(&mut self, val: f64) -> Result<()>

Parameter inline formula of a %SVM optimization problem. For SVM::EPS_SVR. Default value is 0. Read more
source§

fn set_class_weights(&mut self, val: &Mat) -> Result<()>

Optional weights in the SVM::C_SVC problem, assigned to particular classes. They are multiplied by C so the parameter C of class i becomes classWeights(i) * C. Thus these weights affect the misclassification penalty for different classes. The larger weight, the larger penalty on misclassification of data from the corresponding class. Default value is empty Mat. Read more
source§

fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>

Termination criteria of the iterative %SVM training procedure which solves a partial case of constrained quadratic optimization problem. You can specify tolerance and/or the maximum number of iterations. Default value is TermCriteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, FLT_EPSILON ); Read more
source§

fn set_kernel(&mut self, kernel_type: i32) -> Result<()>

Initialize with one of predefined kernels. See SVM::KernelTypes.
source§

fn set_custom_kernel(&mut self, _kernel: &Ptr<SVM_Kernel>) -> Result<()>

Initialize with custom kernel. See SVM::Kernel class for implementation details
source§

fn train_auto( &mut self, data: &Ptr<TrainData>, k_fold: i32, cgrid: ParamGrid, gamma_grid: ParamGrid, p_grid: ParamGrid, nu_grid: ParamGrid, coeff_grid: ParamGrid, degree_grid: ParamGrid, balanced: bool ) -> Result<bool>

Trains an %SVM with optimal parameters. Read more
source§

fn train_auto_def(&mut self, data: &Ptr<TrainData>) -> Result<bool>

Trains an %SVM with optimal parameters. Read more
source§

fn train_auto_with_data( &mut self, samples: &impl ToInputArray, layout: i32, responses: &impl ToInputArray, k_fold: i32, cgrid: Ptr<ParamGrid>, gamma_grid: Ptr<ParamGrid>, p_grid: Ptr<ParamGrid>, nu_grid: Ptr<ParamGrid>, coeff_grid: Ptr<ParamGrid>, degree_grid: Ptr<ParamGrid>, balanced: bool ) -> Result<bool>

Trains an %SVM with optimal parameters Read more
source§

fn train_auto_with_data_def( &mut self, samples: &impl ToInputArray, layout: i32, responses: &impl ToInputArray ) -> Result<bool>

Trains an %SVM with optimal parameters Read more
source§

impl SVMTraitConst for SVM

source§

fn as_raw_SVM(&self) -> *const c_void

source§

fn get_type(&self) -> Result<i32>

Type of a %SVM formulation. See SVM::Types. Default value is SVM::C_SVC. Read more
source§

fn get_gamma(&self) -> Result<f64>

Parameter inline formula of a kernel function. For SVM::POLY, SVM::RBF, SVM::SIGMOID or SVM::CHI2. Default value is 1. Read more
source§

fn get_coef0(&self) -> Result<f64>

Parameter coef0 of a kernel function. For SVM::POLY or SVM::SIGMOID. Default value is 0. Read more
source§

fn get_degree(&self) -> Result<f64>

Parameter degree of a kernel function. For SVM::POLY. Default value is 0. Read more
source§

fn get_c(&self) -> Result<f64>

Parameter C of a %SVM optimization problem. For SVM::C_SVC, SVM::EPS_SVR or SVM::NU_SVR. Default value is 0. Read more
source§

fn get_nu(&self) -> Result<f64>

Parameter inline formula of a %SVM optimization problem. For SVM::NU_SVC, SVM::ONE_CLASS or SVM::NU_SVR. Default value is 0. Read more
source§

fn get_p(&self) -> Result<f64>

Parameter inline formula of a %SVM optimization problem. For SVM::EPS_SVR. Default value is 0. Read more
source§

fn get_class_weights(&self) -> Result<Mat>

Optional weights in the SVM::C_SVC problem, assigned to particular classes. They are multiplied by C so the parameter C of class i becomes classWeights(i) * C. Thus these weights affect the misclassification penalty for different classes. The larger weight, the larger penalty on misclassification of data from the corresponding class. Default value is empty Mat. Read more
source§

fn get_term_criteria(&self) -> Result<TermCriteria>

Termination criteria of the iterative %SVM training procedure which solves a partial case of constrained quadratic optimization problem. You can specify tolerance and/or the maximum number of iterations. Default value is TermCriteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, FLT_EPSILON ); Read more
source§

fn get_kernel_type(&self) -> Result<i32>

Type of a %SVM kernel. See SVM::KernelTypes. Default value is SVM::RBF.
source§

fn get_support_vectors(&self) -> Result<Mat>

Retrieves all the support vectors Read more
source§

fn get_uncompressed_support_vectors(&self) -> Result<Mat>

Retrieves all the uncompressed support vectors of a linear %SVM Read more
source§

fn get_decision_function( &self, i: i32, alpha: &mut impl ToOutputArray, svidx: &mut impl ToOutputArray ) -> Result<f64>

Retrieves the decision function Read more
source§

impl StatModelTrait for SVM

source§

fn as_raw_mut_StatModel(&mut self) -> *mut c_void

source§

fn train_with_data( &mut self, train_data: &Ptr<TrainData>, flags: i32 ) -> Result<bool>

Trains the statistical model Read more
source§

fn train_with_data_def(&mut self, train_data: &Ptr<TrainData>) -> Result<bool>

Trains the statistical model Read more
source§

fn train( &mut self, samples: &impl ToInputArray, layout: i32, responses: &impl ToInputArray ) -> Result<bool>

Trains the statistical model Read more
source§

impl StatModelTraitConst for SVM

source§

fn as_raw_StatModel(&self) -> *const c_void

source§

fn get_var_count(&self) -> Result<i32>

Returns the number of variables in training samples
source§

fn empty(&self) -> Result<bool>

source§

fn is_trained(&self) -> Result<bool>

Returns true if the model is trained
source§

fn is_classifier(&self) -> Result<bool>

Returns true if the model is classifier
source§

fn calc_error( &self, data: &Ptr<TrainData>, test: bool, resp: &mut impl ToOutputArray ) -> Result<f32>

Computes error on the training or test dataset Read more
source§

fn predict( &self, samples: &impl ToInputArray, results: &mut impl ToOutputArray, flags: i32 ) -> Result<f32>

Predicts response(s) for the provided sample(s) Read more
source§

fn predict_def(&self, samples: &impl ToInputArray) -> Result<f32>

Predicts response(s) for the provided sample(s) Read more
source§

impl TryFrom<StatModel> for SVM

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(s: StatModel) -> Result<Self>

Performs the conversion.
source§

impl Send for SVM

Auto Trait Implementations§

§

impl RefUnwindSafe for SVM

§

impl !Sync for SVM

§

impl Unpin for SVM

§

impl UnwindSafe for SVM

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.