pub struct CUDA_NvidiaOpticalFlow_1_0 { /* private fields */ }
Expand description

Class for computing the optical flow vectors between two images using NVIDIA Optical Flow hardware and Optical Flow SDK 1.0.

Note:

  • A sample application demonstrating the use of NVIDIA Optical Flow can be found at opencv_contrib_source_code/modules/cudaoptflow/samples/nvidia_optical_flow.cpp
  • An example application comparing accuracy and performance of NVIDIA Optical Flow with other optical flow algorithms in OpenCV can be found at opencv_contrib_source_code/modules/cudaoptflow/samples/optical_flow.cpp

Implementations§

source§

impl CUDA_NvidiaOpticalFlow_1_0

source

pub fn create( image_size: Size, perf_preset: CUDA_NvidiaOpticalFlow_1_0_NVIDIA_OF_PERF_LEVEL, enable_temporal_hints: bool, enable_external_hints: bool, enable_cost_buffer: bool, gpu_id: i32, input_stream: &mut Stream, output_stream: &mut Stream ) -> Result<Ptr<CUDA_NvidiaOpticalFlow_1_0>>

Instantiate NVIDIA Optical Flow

Parameters
  • imageSize: Size of input image in pixels.
  • perfPreset: Optional parameter. Refer NV OF SDK documentation for details about presets. Defaults to NV_OF_PERF_LEVEL_SLOW.
  • enableTemporalHints: Optional parameter. Flag to enable temporal hints. When set to true, the hardware uses the flow vectors generated in previous call to calc() as internal hints for the current call to calc(). Useful when computing flow vectors between successive video frames. Defaults to false.
  • enableExternalHints: Optional Parameter. Flag to enable passing external hints buffer to calc(). Defaults to false.
  • enableCostBuffer: Optional Parameter. Flag to enable cost buffer output from calc(). Defaults to false.
  • gpuId: Optional parameter to select the GPU ID on which the optical flow should be computed. Useful in multi-GPU systems. Defaults to 0.
  • inputStream: Optical flow algorithm may optionally involve cuda preprocessing on the input buffers. The input cuda stream can be used to pipeline and synchronize the cuda preprocessing tasks with OF HW engine. If input stream is not set, the execute function will use default stream which is NULL stream;
  • outputStream: Optical flow algorithm may optionally involve cuda post processing on the output flow vectors. The output cuda stream can be used to pipeline and synchronize the cuda post processing tasks with OF HW engine. If output stream is not set, the execute function will use default stream which is NULL stream;
C++ default parameters
  • perf_preset: cv::cuda::NvidiaOpticalFlow_1_0::NV_OF_PERF_LEVEL_SLOW
  • enable_temporal_hints: false
  • enable_external_hints: false
  • enable_cost_buffer: false
  • gpu_id: 0
  • input_stream: Stream::Null()
  • output_stream: Stream::Null()
source

pub fn create_def(image_size: Size) -> Result<Ptr<CUDA_NvidiaOpticalFlow_1_0>>

Instantiate NVIDIA Optical Flow

Parameters
  • imageSize: Size of input image in pixels.
  • perfPreset: Optional parameter. Refer NV OF SDK documentation for details about presets. Defaults to NV_OF_PERF_LEVEL_SLOW.
  • enableTemporalHints: Optional parameter. Flag to enable temporal hints. When set to true, the hardware uses the flow vectors generated in previous call to calc() as internal hints for the current call to calc(). Useful when computing flow vectors between successive video frames. Defaults to false.
  • enableExternalHints: Optional Parameter. Flag to enable passing external hints buffer to calc(). Defaults to false.
  • enableCostBuffer: Optional Parameter. Flag to enable cost buffer output from calc(). Defaults to false.
  • gpuId: Optional parameter to select the GPU ID on which the optical flow should be computed. Useful in multi-GPU systems. Defaults to 0.
  • inputStream: Optical flow algorithm may optionally involve cuda preprocessing on the input buffers. The input cuda stream can be used to pipeline and synchronize the cuda preprocessing tasks with OF HW engine. If input stream is not set, the execute function will use default stream which is NULL stream;
  • outputStream: Optical flow algorithm may optionally involve cuda post processing on the output flow vectors. The output cuda stream can be used to pipeline and synchronize the cuda post processing tasks with OF HW engine. If output stream is not set, the execute function will use default stream which is NULL stream;
Note

This alternative version of CUDA_NvidiaOpticalFlow_1_0::create function uses the following default values for its arguments:

  • perf_preset: cv::cuda::NvidiaOpticalFlow_1_0::NV_OF_PERF_LEVEL_SLOW
  • enable_temporal_hints: false
  • enable_external_hints: false
  • enable_cost_buffer: false
  • gpu_id: 0
  • input_stream: Stream::Null()
  • output_stream: Stream::Null()

Trait Implementations§

source§

impl AlgorithmTrait for CUDA_NvidiaOpticalFlow_1_0

source§

fn as_raw_mut_Algorithm(&mut self) -> *mut c_void

source§

fn clear(&mut self) -> Result<()>

Clears the algorithm state
source§

fn read(&mut self, fn_: &FileNode) -> Result<()>

Reads algorithm parameters from a file storage
source§

impl AlgorithmTraitConst for CUDA_NvidiaOpticalFlow_1_0

source§

fn as_raw_Algorithm(&self) -> *const c_void

source§

fn write(&self, fs: &mut FileStorage) -> Result<()>

Stores algorithm parameters in a file storage
source§

fn write_1(&self, fs: &mut FileStorage, name: &str) -> Result<()>

Stores algorithm parameters in a file storage Read more
source§

fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>

@deprecated Read more
source§

fn write_with_name_def(&self, fs: &Ptr<FileStorage>) -> Result<()>

👎Deprecated:

Note

Deprecated: ## Note This alternative version of AlgorithmTraitConst::write_with_name function uses the following default values for its arguments: Read more
source§

fn empty(&self) -> Result<bool>

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
source§

fn save(&self, filename: &str) -> Result<()>

Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
source§

fn get_default_name(&self) -> Result<String>

Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
source§

impl Boxed for CUDA_NvidiaOpticalFlow_1_0

source§

unsafe fn from_raw(ptr: *mut c_void) -> Self

Wrap the specified raw pointer Read more
source§

fn into_raw(self) -> *mut c_void

Return an the underlying raw pointer while consuming this wrapper. Read more
source§

fn as_raw(&self) -> *const c_void

Return the underlying raw pointer. Read more
source§

fn as_raw_mut(&mut self) -> *mut c_void

Return the underlying mutable raw pointer Read more
source§

impl CUDA_NvidiaHWOpticalFlowTrait for CUDA_NvidiaOpticalFlow_1_0

source§

fn as_raw_mut_CUDA_NvidiaHWOpticalFlow(&mut self) -> *mut c_void

source§

fn calc( &mut self, input_image: &impl ToInputArray, reference_image: &impl ToInputArray, flow: &mut impl ToInputOutputArray, stream: &mut Stream, hint: &impl ToInputArray, cost: &mut impl ToOutputArray ) -> Result<()>

Calculates Optical Flow using NVIDIA Optical Flow SDK. Read more
source§

fn calc_def( &mut self, input_image: &impl ToInputArray, reference_image: &impl ToInputArray, flow: &mut impl ToInputOutputArray ) -> Result<()>

Calculates Optical Flow using NVIDIA Optical Flow SDK. Read more
source§

fn collect_garbage(&mut self) -> Result<()>

Releases all buffers, contexts and device pointers.
source§

impl CUDA_NvidiaHWOpticalFlowTraitConst for CUDA_NvidiaOpticalFlow_1_0

source§

fn as_raw_CUDA_NvidiaHWOpticalFlow(&self) -> *const c_void

source§

fn get_grid_size(&self) -> Result<i32>

Returns grid size of output buffer as per the hardware’s capability.
source§

impl CUDA_NvidiaOpticalFlow_1_0Trait for CUDA_NvidiaOpticalFlow_1_0

source§

fn as_raw_mut_CUDA_NvidiaOpticalFlow_1_0(&mut self) -> *mut c_void

source§

fn up_sampler( &mut self, flow: &impl ToInputArray, image_size: Size, grid_size: i32, upsampled_flow: &mut impl ToInputOutputArray ) -> Result<()>

The NVIDIA optical flow hardware generates flow vectors at granularity gridSize, which can be queried via function getGridSize(). Upsampler() helper function converts the hardware-generated flow vectors to dense representation (1 flow vector for each pixel) using nearest neighbour upsampling method. Read more
source§

impl CUDA_NvidiaOpticalFlow_1_0TraitConst for CUDA_NvidiaOpticalFlow_1_0

source§

impl Debug for CUDA_NvidiaOpticalFlow_1_0

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Drop for CUDA_NvidiaOpticalFlow_1_0

source§

fn drop(&mut self)

Executes the destructor for this type. Read more
source§

impl From<CUDA_NvidiaOpticalFlow_1_0> for Algorithm

source§

fn from(s: CUDA_NvidiaOpticalFlow_1_0) -> Self

Converts to this type from the input type.
source§

impl From<CUDA_NvidiaOpticalFlow_1_0> for CUDA_NvidiaHWOpticalFlow

source§

fn from(s: CUDA_NvidiaOpticalFlow_1_0) -> Self

Converts to this type from the input type.
source§

impl TryFrom<CUDA_NvidiaHWOpticalFlow> for CUDA_NvidiaOpticalFlow_1_0

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from(s: CUDA_NvidiaHWOpticalFlow) -> Result<Self>

Performs the conversion.
source§

impl Send for CUDA_NvidiaOpticalFlow_1_0

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.