pub struct BoostDesc { /* private fields */ }
Expand description

Class implementing BoostDesc (Learning Image Descriptors with Boosting), described in Trzcinski13a and Trzcinski13b.

Parameters

  • desc: type of descriptor to use, BoostDesc::BINBOOST_256 is default (256 bit long dimension) Available types are: BoostDesc::BGM, BoostDesc::BGM_HARD, BoostDesc::BGM_BILINEAR, BoostDesc::LBGM, BoostDesc::BINBOOST_64, BoostDesc::BINBOOST_128, BoostDesc::BINBOOST_256
  • use_orientation: sample patterns using keypoints orientation, enabled by default
  • scale_factor: adjust the sampling window of detected keypoints 6.25f is default and fits for KAZE, SURF detected keypoints window ratio 6.75f should be the scale for SIFT detected keypoints window ratio 5.00f should be the scale for AKAZE, MSD, AGAST, FAST, BRISK keypoints window ratio 0.75f should be the scale for ORB keypoints ratio 1.50f was the default in original implementation

Note: BGM is the base descriptor where each binary dimension is computed as the output of a single weak learner. BGM_HARD and BGM_BILINEAR refers to same BGM but use different type of gradient binning. In the BGM_HARD that use ASSIGN_HARD binning type the gradient is assigned to the nearest orientation bin. In the BGM_BILINEAR that use ASSIGN_BILINEAR binning type the gradient is assigned to the two neighbouring bins. In the BGM and all other modes that use ASSIGN_SOFT binning type the gradient is assigned to 8 nearest bins according to the cosine value between the gradient angle and the bin center. LBGM (alias FP-Boost) is the floating point extension where each dimension is computed as a linear combination of the weak learner responses. BINBOOST and subvariants are the binary extensions of LBGM where each bit is computed as a thresholded linear combination of a set of weak learners. BoostDesc header files (boostdesc_*.i) was exported from original binaries with export-boostdesc.py script from samples subfolder.

Implementations§

source§

impl BoostDesc

source

pub fn create( desc: i32, use_scale_orientation: bool, scale_factor: f32 ) -> Result<Ptr<BoostDesc>>

C++ default parameters
  • desc: BoostDesc::BINBOOST_256
  • use_scale_orientation: true
  • scale_factor: 6.25f

Trait Implementations§

source§

impl AlgorithmTrait for BoostDesc

source§

fn as_raw_mut_Algorithm(&mut self) -> *mut c_void

source§

fn clear(&mut self) -> Result<()>

Clears the algorithm state
source§

fn read(&mut self, fn_: &FileNode) -> Result<()>

Reads algorithm parameters from a file storage
source§

impl AlgorithmTraitConst for BoostDesc

source§

fn as_raw_Algorithm(&self) -> *const c_void

source§

fn write(&self, fs: &mut FileStorage) -> Result<()>

Stores algorithm parameters in a file storage
source§

fn write_1(&self, fs: &mut FileStorage, name: &str) -> Result<()>

Stores algorithm parameters in a file storage Read more
source§

fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>

@deprecated Read more
source§

fn empty(&self) -> Result<bool>

Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
source§

fn save(&self, filename: &str) -> Result<()>

Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
source§

fn get_default_name(&self) -> Result<String>

Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string.
source§

impl BoostDescTrait for BoostDesc

source§

fn as_raw_mut_BoostDesc(&mut self) -> *mut c_void

source§

fn set_use_scale_orientation( &mut self, use_scale_orientation: bool ) -> Result<()>

source§

fn set_scale_factor(&mut self, scale_factor: f32) -> Result<()>

source§

impl BoostDescTraitConst for BoostDesc

source§

impl Boxed for BoostDesc

source§

unsafe fn from_raw(ptr: *mut c_void) -> Self

Wrap the specified raw pointer Read more
source§

fn into_raw(self) -> *mut c_void

Return an the underlying raw pointer while consuming this wrapper. Read more
source§

fn as_raw(&self) -> *const c_void

Return the underlying raw pointer. Read more
source§

fn as_raw_mut(&mut self) -> *mut c_void

Return the underlying mutable raw pointer Read more
source§

impl Debug for BoostDesc

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Drop for BoostDesc

source§

fn drop(&mut self)

Executes the destructor for this type. Read more
source§

impl Feature2DTrait for BoostDesc

source§

fn as_raw_mut_Feature2D(&mut self) -> *mut c_void

source§

fn detect( &mut self, image: &impl ToInputArray, keypoints: &mut Vector<KeyPoint>, mask: &impl ToInputArray ) -> Result<()>

Detects keypoints in an image (first variant) or image set (second variant). Read more
source§

fn detect_multiple( &mut self, images: &impl ToInputArray, keypoints: &mut Vector<Vector<KeyPoint>>, masks: &impl ToInputArray ) -> Result<()>

Detects keypoints in an image (first variant) or image set (second variant). Read more
source§

fn compute( &mut self, image: &impl ToInputArray, keypoints: &mut Vector<KeyPoint>, descriptors: &mut impl ToOutputArray ) -> Result<()>

Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant). Read more
source§

fn compute_multiple( &mut self, images: &impl ToInputArray, keypoints: &mut Vector<Vector<KeyPoint>>, descriptors: &mut impl ToOutputArray ) -> Result<()>

Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (second variant). Read more
source§

fn detect_and_compute( &mut self, image: &impl ToInputArray, mask: &impl ToInputArray, keypoints: &mut Vector<KeyPoint>, descriptors: &mut impl ToOutputArray, use_provided_keypoints: bool ) -> Result<()>

Detects keypoints and computes the descriptors Read more
source§

fn read(&mut self, file_name: &str) -> Result<()>

source§

fn read_1(&mut self, unnamed: &FileNode) -> Result<()>

source§

impl Feature2DTraitConst for BoostDesc

source§

fn as_raw_Feature2D(&self) -> *const c_void

source§

fn descriptor_size(&self) -> Result<i32>

source§

fn descriptor_type(&self) -> Result<i32>

source§

fn default_norm(&self) -> Result<i32>

source§

fn write(&self, file_name: &str) -> Result<()>

source§

fn write_1(&self, unnamed: &mut FileStorage) -> Result<()>

source§

fn empty(&self) -> Result<bool>

Return true if detector object is empty
source§

fn get_default_name(&self) -> Result<String>

source§

fn write_2(&self, fs: &mut FileStorage, name: &str) -> Result<()>

source§

fn write_3(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>

source§

impl From<BoostDesc> for Algorithm

source§

fn from(s: BoostDesc) -> Self

Converts to this type from the input type.
source§

impl From<BoostDesc> for Feature2D

source§

fn from(s: BoostDesc) -> Self

Converts to this type from the input type.
source§

impl Send for BoostDesc

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.