pub trait ANN_MLPTrait: ANN_MLPTraitConst + StatModelTrait {
Show 17 methods // Required method fn as_raw_mut_ANN_MLP(&mut self) -> *mut c_void; // Provided methods fn set_train_method( &mut self, method: i32, param1: f64, param2: f64 ) -> Result<()> { ... } fn set_activation_function( &mut self, typ: i32, param1: f64, param2: f64 ) -> Result<()> { ... } fn set_layer_sizes( &mut self, _layer_sizes: &impl ToInputArray ) -> Result<()> { ... } fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()> { ... } fn set_backprop_weight_scale(&mut self, val: f64) -> Result<()> { ... } fn set_backprop_momentum_scale(&mut self, val: f64) -> Result<()> { ... } fn set_rprop_dw0(&mut self, val: f64) -> Result<()> { ... } fn set_rprop_dw_plus(&mut self, val: f64) -> Result<()> { ... } fn set_rprop_dw_minus(&mut self, val: f64) -> Result<()> { ... } fn set_rprop_dw_min(&mut self, val: f64) -> Result<()> { ... } fn set_rprop_dw_max(&mut self, val: f64) -> Result<()> { ... } fn set_anneal_initial_t(&mut self, val: f64) -> Result<()> { ... } fn set_anneal_final_t(&mut self, val: f64) -> Result<()> { ... } fn set_anneal_cooling_ratio(&mut self, val: f64) -> Result<()> { ... } fn set_anneal_ite_per_step(&mut self, val: i32) -> Result<()> { ... } fn set_anneal_energy_rng(&mut self, rng: &RNG) -> Result<()> { ... }
}
Expand description

Mutable methods for crate::ml::ANN_MLP

Required Methods§

Provided Methods§

source

fn set_train_method( &mut self, method: i32, param1: f64, param2: f64 ) -> Result<()>

Sets training method and common parameters.

Parameters
  • method: Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods.
  • param1: passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP and to initialT for ANN_MLP::ANNEAL.
  • param2: passed to setRpropDWMin for ANN_MLP::RPROP and to setBackpropMomentumScale for ANN_MLP::BACKPROP and to finalT for ANN_MLP::ANNEAL.
C++ default parameters
  • param1: 0
  • param2: 0
source

fn set_activation_function( &mut self, typ: i32, param1: f64, param2: f64 ) -> Result<()>

Initialize the activation function for each neuron. Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM.

Parameters
  • type: The type of activation function. See ANN_MLP::ActivationFunctions.
  • param1: The first parameter of the activation function, inline formula. Default value is 0.
  • param2: The second parameter of the activation function, inline formula. Default value is 0.
C++ default parameters
  • param1: 0
  • param2: 0
source

fn set_layer_sizes(&mut self, _layer_sizes: &impl ToInputArray) -> Result<()>

Integer vector specifying the number of neurons in each layer including the input and output layers. The very first element specifies the number of elements in the input layer. The last element - number of elements in the output layer. Default value is empty Mat.

See also

getLayerSizes

source

fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>

Termination criteria of the training algorithm. You can specify the maximum number of iterations (maxCount) and/or how much the error could change between the iterations to make the algorithm continue (epsilon). Default value is TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, 0.01).

See also

setTermCriteria getTermCriteria

source

fn set_backprop_weight_scale(&mut self, val: f64) -> Result<()>

BPROP: Strength of the weight gradient term. The recommended value is about 0.1. Default value is 0.1.

See also

setBackpropWeightScale getBackpropWeightScale

source

fn set_backprop_momentum_scale(&mut self, val: f64) -> Result<()>

BPROP: Strength of the momentum term (the difference between weights on the 2 previous iterations). This parameter provides some inertia to smooth the random fluctuations of the weights. It can vary from 0 (the feature is disabled) to 1 and beyond. The value 0.1 or so is good enough. Default value is 0.1.

See also

setBackpropMomentumScale getBackpropMomentumScale

source

fn set_rprop_dw0(&mut self, val: f64) -> Result<()>

RPROP: Initial value inline formula of update-values inline formula. Default value is 0.1.

See also

setRpropDW0 getRpropDW0

source

fn set_rprop_dw_plus(&mut self, val: f64) -> Result<()>

RPROP: Increase factor inline formula. It must be >1. Default value is 1.2.

See also

setRpropDWPlus getRpropDWPlus

source

fn set_rprop_dw_minus(&mut self, val: f64) -> Result<()>

RPROP: Decrease factor inline formula. It must be <1. Default value is 0.5.

See also

setRpropDWMinus getRpropDWMinus

source

fn set_rprop_dw_min(&mut self, val: f64) -> Result<()>

RPROP: Update-values lower limit inline formula. It must be positive. Default value is FLT_EPSILON.

See also

setRpropDWMin getRpropDWMin

source

fn set_rprop_dw_max(&mut self, val: f64) -> Result<()>

RPROP: Update-values upper limit inline formula. It must be >1. Default value is 50.

See also

setRpropDWMax getRpropDWMax

source

fn set_anneal_initial_t(&mut self, val: f64) -> Result<()>

ANNEAL: Update initial temperature. It must be >=0. Default value is 10.

See also

setAnnealInitialT getAnnealInitialT

source

fn set_anneal_final_t(&mut self, val: f64) -> Result<()>

ANNEAL: Update final temperature. It must be >=0 and less than initialT. Default value is 0.1.

See also

setAnnealFinalT getAnnealFinalT

source

fn set_anneal_cooling_ratio(&mut self, val: f64) -> Result<()>

ANNEAL: Update cooling ratio. It must be >0 and less than 1. Default value is 0.95.

See also

setAnnealCoolingRatio getAnnealCoolingRatio

source

fn set_anneal_ite_per_step(&mut self, val: i32) -> Result<()>

ANNEAL: Update iteration per step. It must be >0 . Default value is 10.

See also

setAnnealItePerStep getAnnealItePerStep

source

fn set_anneal_energy_rng(&mut self, rng: &RNG) -> Result<()>

Set/initialize anneal RNG

Implementors§