Struct opencv::ml::NormalBayesClassifier
source · pub struct NormalBayesClassifier { /* private fields */ }
Expand description
Implementations§
source§impl NormalBayesClassifier
impl NormalBayesClassifier
sourcepub fn create() -> Result<Ptr<NormalBayesClassifier>>
pub fn create() -> Result<Ptr<NormalBayesClassifier>>
Creates empty model Use StatModel::train to train the model after creation.
sourcepub fn load(
filepath: &str,
node_name: &str
) -> Result<Ptr<NormalBayesClassifier>>
pub fn load( filepath: &str, node_name: &str ) -> Result<Ptr<NormalBayesClassifier>>
Loads and creates a serialized NormalBayesClassifier from a file
Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk. Load the NormalBayesClassifier from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
Parameters
- filepath: path to serialized NormalBayesClassifier
- nodeName: name of node containing the classifier
C++ default parameters
- node_name: String()
Trait Implementations§
source§impl AlgorithmTraitConst for NormalBayesClassifier
impl AlgorithmTraitConst for NormalBayesClassifier
fn as_raw_Algorithm(&self) -> *const c_void
source§fn write(&self, fs: &mut FileStorage) -> Result<()>
fn write(&self, fs: &mut FileStorage) -> Result<()>
Stores algorithm parameters in a file storage
source§fn write_1(&self, fs: &mut FileStorage, name: &str) -> Result<()>
fn write_1(&self, fs: &mut FileStorage, name: &str) -> Result<()>
Stores algorithm parameters in a file storage Read more
source§fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
@deprecated Read more
source§fn empty(&self) -> Result<bool>
fn empty(&self) -> Result<bool>
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
source§fn save(&self, filename: &str) -> Result<()>
fn save(&self, filename: &str) -> Result<()>
Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
source§fn get_default_name(&self) -> Result<String>
fn get_default_name(&self) -> Result<String>
Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
source§impl Boxed for NormalBayesClassifier
impl Boxed for NormalBayesClassifier
source§impl Debug for NormalBayesClassifier
impl Debug for NormalBayesClassifier
source§impl Drop for NormalBayesClassifier
impl Drop for NormalBayesClassifier
source§impl From<NormalBayesClassifier> for Algorithm
impl From<NormalBayesClassifier> for Algorithm
source§fn from(s: NormalBayesClassifier) -> Self
fn from(s: NormalBayesClassifier) -> Self
Converts to this type from the input type.
source§impl From<NormalBayesClassifier> for StatModel
impl From<NormalBayesClassifier> for StatModel
source§fn from(s: NormalBayesClassifier) -> Self
fn from(s: NormalBayesClassifier) -> Self
Converts to this type from the input type.
source§impl NormalBayesClassifierTrait for NormalBayesClassifier
impl NormalBayesClassifierTrait for NormalBayesClassifier
fn as_raw_mut_NormalBayesClassifier(&mut self) -> *mut c_void
source§impl NormalBayesClassifierTraitConst for NormalBayesClassifier
impl NormalBayesClassifierTraitConst for NormalBayesClassifier
fn as_raw_NormalBayesClassifier(&self) -> *const c_void
source§fn predict_prob(
&self,
inputs: &impl ToInputArray,
outputs: &mut impl ToOutputArray,
output_probs: &mut impl ToOutputArray,
flags: i32
) -> Result<f32>
fn predict_prob( &self, inputs: &impl ToInputArray, outputs: &mut impl ToOutputArray, output_probs: &mut impl ToOutputArray, flags: i32 ) -> Result<f32>
Predicts the response for sample(s). Read more
source§impl StatModelTrait for NormalBayesClassifier
impl StatModelTrait for NormalBayesClassifier
fn as_raw_mut_StatModel(&mut self) -> *mut c_void
source§fn train_with_data(
&mut self,
train_data: &Ptr<TrainData>,
flags: i32
) -> Result<bool>
fn train_with_data( &mut self, train_data: &Ptr<TrainData>, flags: i32 ) -> Result<bool>
Trains the statistical model Read more
source§fn train(
&mut self,
samples: &impl ToInputArray,
layout: i32,
responses: &impl ToInputArray
) -> Result<bool>
fn train( &mut self, samples: &impl ToInputArray, layout: i32, responses: &impl ToInputArray ) -> Result<bool>
Trains the statistical model Read more
source§impl StatModelTraitConst for NormalBayesClassifier
impl StatModelTraitConst for NormalBayesClassifier
fn as_raw_StatModel(&self) -> *const c_void
source§fn get_var_count(&self) -> Result<i32>
fn get_var_count(&self) -> Result<i32>
Returns the number of variables in training samples
fn empty(&self) -> Result<bool>
source§fn is_trained(&self) -> Result<bool>
fn is_trained(&self) -> Result<bool>
Returns true if the model is trained
source§fn is_classifier(&self) -> Result<bool>
fn is_classifier(&self) -> Result<bool>
Returns true if the model is classifier
source§fn calc_error(
&self,
data: &Ptr<TrainData>,
test: bool,
resp: &mut impl ToOutputArray
) -> Result<f32>
fn calc_error( &self, data: &Ptr<TrainData>, test: bool, resp: &mut impl ToOutputArray ) -> Result<f32>
Computes error on the training or test dataset Read more
source§fn predict(
&self,
samples: &impl ToInputArray,
results: &mut impl ToOutputArray,
flags: i32
) -> Result<f32>
fn predict( &self, samples: &impl ToInputArray, results: &mut impl ToOutputArray, flags: i32 ) -> Result<f32>
Predicts response(s) for the provided sample(s) Read more
source§impl TryFrom<StatModel> for NormalBayesClassifier
impl TryFrom<StatModel> for NormalBayesClassifier
impl Send for NormalBayesClassifier
Auto Trait Implementations§
impl RefUnwindSafe for NormalBayesClassifier
impl !Sync for NormalBayesClassifier
impl Unpin for NormalBayesClassifier
impl UnwindSafe for NormalBayesClassifier
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more