pub struct EM { /* private fields */ }
Expand description
Implementations§
source§impl EM
impl EM
sourcepub fn create() -> Result<Ptr<EM>>
pub fn create() -> Result<Ptr<EM>>
Creates empty %EM model. The model should be trained then using StatModel::train(traindata, flags) method. Alternatively, you can use one of the EM::train* methods or load it from file using Algorithm::load<EM>(filename).
sourcepub fn load(filepath: &str, node_name: &str) -> Result<Ptr<EM>>
pub fn load(filepath: &str, node_name: &str) -> Result<Ptr<EM>>
Loads and creates a serialized EM from a file
Use EM::save to serialize and store an EM to disk. Load the EM from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
Parameters
- filepath: path to serialized EM
- nodeName: name of node containing the classifier
C++ default parameters
- node_name: String()
Trait Implementations§
source§impl AlgorithmTrait for EM
impl AlgorithmTrait for EM
source§impl AlgorithmTraitConst for EM
impl AlgorithmTraitConst for EM
fn as_raw_Algorithm(&self) -> *const c_void
source§fn write(&self, fs: &mut FileStorage) -> Result<()>
fn write(&self, fs: &mut FileStorage) -> Result<()>
Stores algorithm parameters in a file storage
source§fn write_1(&self, fs: &mut FileStorage, name: &str) -> Result<()>
fn write_1(&self, fs: &mut FileStorage, name: &str) -> Result<()>
Stores algorithm parameters in a file storage Read more
source§fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
@deprecated Read more
source§fn empty(&self) -> Result<bool>
fn empty(&self) -> Result<bool>
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
source§fn save(&self, filename: &str) -> Result<()>
fn save(&self, filename: &str) -> Result<()>
Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs).
source§fn get_default_name(&self) -> Result<String>
fn get_default_name(&self) -> Result<String>
Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string.
source§impl Boxed for EM
impl Boxed for EM
source§impl EMTrait for EM
impl EMTrait for EM
fn as_raw_mut_EM(&mut self) -> *mut c_void
source§fn set_clusters_number(&mut self, val: i32) -> Result<()>
fn set_clusters_number(&mut self, val: i32) -> Result<()>
The number of mixture components in the Gaussian mixture model.
Default value of the parameter is EM::DEFAULT_NCLUSTERS=5. Some of %EM implementation could
determine the optimal number of mixtures within a specified value range, but that is not the
case in ML yet. Read more
source§fn set_covariance_matrix_type(&mut self, val: i32) -> Result<()>
fn set_covariance_matrix_type(&mut self, val: i32) -> Result<()>
Constraint on covariance matrices which defines type of matrices.
See EM::Types. Read more
source§fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
The termination criteria of the %EM algorithm.
The %EM algorithm can be terminated by the number of iterations termCrit.maxCount (number of
M-steps) or when relative change of likelihood logarithm is less than termCrit.epsilon. Default
maximum number of iterations is EM::DEFAULT_MAX_ITERS=100. Read more
source§fn train_em(
&mut self,
samples: &impl ToInputArray,
log_likelihoods: &mut impl ToOutputArray,
labels: &mut impl ToOutputArray,
probs: &mut impl ToOutputArray
) -> Result<bool>
fn train_em( &mut self, samples: &impl ToInputArray, log_likelihoods: &mut impl ToOutputArray, labels: &mut impl ToOutputArray, probs: &mut impl ToOutputArray ) -> Result<bool>
Estimate the Gaussian mixture parameters from a samples set. Read more
source§fn train_e(
&mut self,
samples: &impl ToInputArray,
means0: &impl ToInputArray,
covs0: &impl ToInputArray,
weights0: &impl ToInputArray,
log_likelihoods: &mut impl ToOutputArray,
labels: &mut impl ToOutputArray,
probs: &mut impl ToOutputArray
) -> Result<bool>
fn train_e( &mut self, samples: &impl ToInputArray, means0: &impl ToInputArray, covs0: &impl ToInputArray, weights0: &impl ToInputArray, log_likelihoods: &mut impl ToOutputArray, labels: &mut impl ToOutputArray, probs: &mut impl ToOutputArray ) -> Result<bool>
Estimate the Gaussian mixture parameters from a samples set. Read more
source§fn train_m(
&mut self,
samples: &impl ToInputArray,
probs0: &impl ToInputArray,
log_likelihoods: &mut impl ToOutputArray,
labels: &mut impl ToOutputArray,
probs: &mut impl ToOutputArray
) -> Result<bool>
fn train_m( &mut self, samples: &impl ToInputArray, probs0: &impl ToInputArray, log_likelihoods: &mut impl ToOutputArray, labels: &mut impl ToOutputArray, probs: &mut impl ToOutputArray ) -> Result<bool>
Estimate the Gaussian mixture parameters from a samples set. Read more
source§impl EMTraitConst for EM
impl EMTraitConst for EM
fn as_raw_EM(&self) -> *const c_void
source§fn get_clusters_number(&self) -> Result<i32>
fn get_clusters_number(&self) -> Result<i32>
The number of mixture components in the Gaussian mixture model.
Default value of the parameter is EM::DEFAULT_NCLUSTERS=5. Some of %EM implementation could
determine the optimal number of mixtures within a specified value range, but that is not the
case in ML yet. Read more
source§fn get_covariance_matrix_type(&self) -> Result<i32>
fn get_covariance_matrix_type(&self) -> Result<i32>
Constraint on covariance matrices which defines type of matrices.
See EM::Types. Read more
source§fn get_term_criteria(&self) -> Result<TermCriteria>
fn get_term_criteria(&self) -> Result<TermCriteria>
The termination criteria of the %EM algorithm.
The %EM algorithm can be terminated by the number of iterations termCrit.maxCount (number of
M-steps) or when relative change of likelihood logarithm is less than termCrit.epsilon. Default
maximum number of iterations is EM::DEFAULT_MAX_ITERS=100. Read more
source§fn get_means(&self) -> Result<Mat>
fn get_means(&self) -> Result<Mat>
Returns the cluster centers (means of the Gaussian mixture) Read more
source§fn get_covs(&self, covs: &mut Vector<Mat>) -> Result<()>
fn get_covs(&self, covs: &mut Vector<Mat>) -> Result<()>
Returns covariation matrices Read more
source§fn predict(
&self,
samples: &impl ToInputArray,
results: &mut impl ToOutputArray,
flags: i32
) -> Result<f32>
fn predict( &self, samples: &impl ToInputArray, results: &mut impl ToOutputArray, flags: i32 ) -> Result<f32>
Returns posterior probabilities for the provided samples Read more
source§fn predict2(
&self,
sample: &impl ToInputArray,
probs: &mut impl ToOutputArray
) -> Result<Vec2d>
fn predict2( &self, sample: &impl ToInputArray, probs: &mut impl ToOutputArray ) -> Result<Vec2d>
Returns a likelihood logarithm value and an index of the most probable mixture component
for the given sample. Read more
source§impl StatModelTrait for EM
impl StatModelTrait for EM
fn as_raw_mut_StatModel(&mut self) -> *mut c_void
source§fn train_with_data(
&mut self,
train_data: &Ptr<TrainData>,
flags: i32
) -> Result<bool>
fn train_with_data( &mut self, train_data: &Ptr<TrainData>, flags: i32 ) -> Result<bool>
Trains the statistical model Read more
source§fn train(
&mut self,
samples: &impl ToInputArray,
layout: i32,
responses: &impl ToInputArray
) -> Result<bool>
fn train( &mut self, samples: &impl ToInputArray, layout: i32, responses: &impl ToInputArray ) -> Result<bool>
Trains the statistical model Read more
source§impl StatModelTraitConst for EM
impl StatModelTraitConst for EM
fn as_raw_StatModel(&self) -> *const c_void
source§fn get_var_count(&self) -> Result<i32>
fn get_var_count(&self) -> Result<i32>
Returns the number of variables in training samples
fn empty(&self) -> Result<bool>
source§fn is_trained(&self) -> Result<bool>
fn is_trained(&self) -> Result<bool>
Returns true if the model is trained
source§fn is_classifier(&self) -> Result<bool>
fn is_classifier(&self) -> Result<bool>
Returns true if the model is classifier
source§fn calc_error(
&self,
data: &Ptr<TrainData>,
test: bool,
resp: &mut impl ToOutputArray
) -> Result<f32>
fn calc_error( &self, data: &Ptr<TrainData>, test: bool, resp: &mut impl ToOutputArray ) -> Result<f32>
Computes error on the training or test dataset Read more
source§fn predict(
&self,
samples: &impl ToInputArray,
results: &mut impl ToOutputArray,
flags: i32
) -> Result<f32>
fn predict( &self, samples: &impl ToInputArray, results: &mut impl ToOutputArray, flags: i32 ) -> Result<f32>
Predicts response(s) for the provided sample(s) Read more
impl Send for EM
Auto Trait Implementations§
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more