Struct opencv::video::KalmanFilter
source · pub struct KalmanFilter { /* private fields */ }
Expand description
Kalman filter class.
The class implements a standard Kalman filter http://en.wikipedia.org/wiki/Kalman_filter, Welch95 . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get an extended Kalman filter functionality.
Note: In C API when CvKalman* kalmanFilter structure is not needed anymore, it should be released with cvReleaseKalman(&kalmanFilter)
Implementations§
source§impl KalmanFilter
impl KalmanFilter
pub fn default() -> Result<KalmanFilter>
sourcepub fn new(
dynam_params: i32,
measure_params: i32,
control_params: i32,
typ: i32
) -> Result<KalmanFilter>
pub fn new( dynam_params: i32, measure_params: i32, control_params: i32, typ: i32 ) -> Result<KalmanFilter>
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
Parameters
- dynamParams: Dimensionality of the state.
- measureParams: Dimensionality of the measurement.
- controlParams: Dimensionality of the control vector.
- type: Type of the created matrices that should be CV_32F or CV_64F.
C++ default parameters
- control_params: 0
- typ: CV_32F
Trait Implementations§
source§impl Boxed for KalmanFilter
impl Boxed for KalmanFilter
source§impl Drop for KalmanFilter
impl Drop for KalmanFilter
source§impl KalmanFilterTrait for KalmanFilter
impl KalmanFilterTrait for KalmanFilter
fn as_raw_mut_KalmanFilter(&mut self) -> *mut c_void
source§fn set_state_pre(&mut self, val: Mat)
fn set_state_pre(&mut self, val: Mat)
predicted state (x’(k)): x(k)=Ax(k-1)+Bu(k)
source§fn set_state_post(&mut self, val: Mat)
fn set_state_post(&mut self, val: Mat)
corrected state (x(k)): x(k)=x’(k)+K(k)(z(k)-Hx’(k))
source§fn set_transition_matrix(&mut self, val: Mat)
fn set_transition_matrix(&mut self, val: Mat)
state transition matrix (A)
source§fn set_control_matrix(&mut self, val: Mat)
fn set_control_matrix(&mut self, val: Mat)
control matrix (B) (not used if there is no control)
source§fn set_measurement_matrix(&mut self, val: Mat)
fn set_measurement_matrix(&mut self, val: Mat)
measurement matrix (H)
source§fn set_process_noise_cov(&mut self, val: Mat)
fn set_process_noise_cov(&mut self, val: Mat)
process noise covariance matrix (Q)
source§fn set_measurement_noise_cov(&mut self, val: Mat)
fn set_measurement_noise_cov(&mut self, val: Mat)
measurement noise covariance matrix (R)
source§fn set_error_cov_pre(&mut self, val: Mat)
fn set_error_cov_pre(&mut self, val: Mat)
priori error estimate covariance matrix (P’(k)): P’(k)=A*P(k-1)*At + Q)
source§fn set_error_cov_post(&mut self, val: Mat)
fn set_error_cov_post(&mut self, val: Mat)
posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P’(k)
fn set_temp1(&mut self, val: Mat)
fn set_temp2(&mut self, val: Mat)
fn set_temp3(&mut self, val: Mat)
fn set_temp4(&mut self, val: Mat)
fn set_temp5(&mut self, val: Mat)
source§impl KalmanFilterTraitConst for KalmanFilter
impl KalmanFilterTraitConst for KalmanFilter
fn as_raw_KalmanFilter(&self) -> *const c_void
source§fn state_post(&self) -> Mat
fn state_post(&self) -> Mat
corrected state (x(k)): x(k)=x’(k)+K(k)(z(k)-Hx’(k))
source§fn transition_matrix(&self) -> Mat
fn transition_matrix(&self) -> Mat
state transition matrix (A)
source§fn control_matrix(&self) -> Mat
fn control_matrix(&self) -> Mat
control matrix (B) (not used if there is no control)
source§fn measurement_matrix(&self) -> Mat
fn measurement_matrix(&self) -> Mat
measurement matrix (H)
source§fn process_noise_cov(&self) -> Mat
fn process_noise_cov(&self) -> Mat
process noise covariance matrix (Q)
source§fn measurement_noise_cov(&self) -> Mat
fn measurement_noise_cov(&self) -> Mat
measurement noise covariance matrix (R)
source§fn error_cov_pre(&self) -> Mat
fn error_cov_pre(&self) -> Mat
priori error estimate covariance matrix (P’(k)): P’(k)=A*P(k-1)*At + Q)
source§fn error_cov_post(&self) -> Mat
fn error_cov_post(&self) -> Mat
posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P’(k)
fn temp1(&self) -> Mat
fn temp2(&self) -> Mat
fn temp3(&self) -> Mat
fn temp4(&self) -> Mat
fn temp5(&self) -> Mat
impl Send for KalmanFilter
Auto Trait Implementations§
impl RefUnwindSafe for KalmanFilter
impl !Sync for KalmanFilter
impl Unpin for KalmanFilter
impl UnwindSafe for KalmanFilter
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more