pub struct Model { /* private fields */ }
Expand description
This class is presented high-level API for neural networks.
Model allows to set params for preprocessing input image. Model creates net from file with trained weights and config, sets preprocessing input and runs forward pass.
Implementations§
source§impl Model
impl Model
pub fn default() -> Result<Model>
pub fn copy(unnamed: &Model) -> Model
pub fn copy_mut(unnamed: Model) -> Model
sourcepub fn new(model: &str, config: &str) -> Result<Model>
pub fn new(model: &str, config: &str) -> Result<Model>
Create model from deep learning network represented in one of the supported formats. An order of @p model and @p config arguments does not matter.
Parameters
- model: Binary file contains trained weights.
- config: Text file contains network configuration.
C++ default parameters
- config: “”
Trait Implementations§
source§impl Boxed for Model
impl Boxed for Model
source§impl From<ClassificationModel> for Model
impl From<ClassificationModel> for Model
source§fn from(s: ClassificationModel) -> Self
fn from(s: ClassificationModel) -> Self
Converts to this type from the input type.
source§impl From<DetectionModel> for Model
impl From<DetectionModel> for Model
source§fn from(s: DetectionModel) -> Self
fn from(s: DetectionModel) -> Self
Converts to this type from the input type.
source§impl From<KeypointsModel> for Model
impl From<KeypointsModel> for Model
source§fn from(s: KeypointsModel) -> Self
fn from(s: KeypointsModel) -> Self
Converts to this type from the input type.
source§impl From<SegmentationModel> for Model
impl From<SegmentationModel> for Model
source§fn from(s: SegmentationModel) -> Self
fn from(s: SegmentationModel) -> Self
Converts to this type from the input type.
source§impl From<TextDetectionModel> for Model
impl From<TextDetectionModel> for Model
source§fn from(s: TextDetectionModel) -> Self
fn from(s: TextDetectionModel) -> Self
Converts to this type from the input type.
source§impl From<TextDetectionModel_DB> for Model
impl From<TextDetectionModel_DB> for Model
source§fn from(s: TextDetectionModel_DB) -> Self
fn from(s: TextDetectionModel_DB) -> Self
Converts to this type from the input type.
source§impl From<TextDetectionModel_EAST> for Model
impl From<TextDetectionModel_EAST> for Model
source§fn from(s: TextDetectionModel_EAST) -> Self
fn from(s: TextDetectionModel_EAST) -> Self
Converts to this type from the input type.
source§impl From<TextRecognitionModel> for Model
impl From<TextRecognitionModel> for Model
source§fn from(s: TextRecognitionModel) -> Self
fn from(s: TextRecognitionModel) -> Self
Converts to this type from the input type.
source§impl ModelTrait for Model
impl ModelTrait for Model
fn as_raw_mut_Model(&mut self) -> *mut c_void
source§fn set_input_size_1(&mut self, width: i32, height: i32) -> Result<Model>
fn set_input_size_1(&mut self, width: i32, height: i32) -> Result<Model>
Set input size for frame. Read more
source§fn set_input_mean(&mut self, mean: Scalar) -> Result<Model>
fn set_input_mean(&mut self, mean: Scalar) -> Result<Model>
Set mean value for frame. Read more
source§fn set_input_scale(&mut self, scale: f64) -> Result<Model>
fn set_input_scale(&mut self, scale: f64) -> Result<Model>
Set scalefactor value for frame. Read more
source§fn set_input_swap_rb(&mut self, swap_rb: bool) -> Result<Model>
fn set_input_swap_rb(&mut self, swap_rb: bool) -> Result<Model>
Set flag swapRB for frame. Read more
source§fn set_input_params(
&mut self,
scale: f64,
size: Size,
mean: Scalar,
swap_rb: bool,
crop: bool
) -> Result<()>
fn set_input_params( &mut self, scale: f64, size: Size, mean: Scalar, swap_rb: bool, crop: bool ) -> Result<()>
Set preprocessing parameters for frame. Read more
fn get_network__1(&mut self) -> Result<Net>
source§impl ModelTraitConst for Model
impl ModelTraitConst for Model
fn as_raw_Model(&self) -> *const c_void
source§fn predict(
&self,
frame: &dyn ToInputArray,
outs: &mut dyn ToOutputArray
) -> Result<()>
fn predict( &self, frame: &dyn ToInputArray, outs: &mut dyn ToOutputArray ) -> Result<()>
Given the @p input frame, create input blob, run net and return the output @p blobs. Read more
fn get_network_(&self) -> Result<Net>
impl Send for Model
Auto Trait Implementations§
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more