pub struct HOGDescriptor { /* private fields */ }
Expand description

Implementations§

Creates the HOG descriptor and detector with default parameters.

aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )

Creates the HOG descriptor and detector with default parameters.

aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )

Overloaded parameters
Parameters
  • _winSize: sets winSize with given value.
  • _blockSize: sets blockSize with given value.
  • _blockStride: sets blockStride with given value.
  • _cellSize: sets cellSize with given value.
  • _nbins: sets nbins with given value.
  • _derivAperture: sets derivAperture with given value.
  • _winSigma: sets winSigma with given value.
  • _histogramNormType: sets histogramNormType with given value.
  • _L2HysThreshold: sets L2HysThreshold with given value.
  • _gammaCorrection: sets gammaCorrection with given value.
  • _nlevels: sets nlevels with given value.
  • _signedGradient: sets signedGradient with given value.
C++ default parameters
  • _deriv_aperture: 1
  • _win_sigma: -1
  • _histogram_norm_type: HOGDescriptor::L2Hys
  • _l2_hys_threshold: 0.2
  • _gamma_correction: false
  • _nlevels: HOGDescriptor::DEFAULT_NLEVELS
  • _signed_gradient: false

Creates the HOG descriptor and detector with default parameters.

aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )

Overloaded parameters

Creates the HOG descriptor and detector and loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file.

Parameters
  • filename: The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier.

Creates the HOG descriptor and detector with default parameters.

aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )

Overloaded parameters
Parameters
  • d: the HOGDescriptor which cloned to create a new one.

Returns coefficients of the classifier trained for people detection (for 64x128 windows).

@example samples/tapi/hog.cpp / Returns coefficients of the classifier trained for people detection (for 48x96 windows).

Trait Implementations§

Wrap the specified raw pointer Read more
Return an the underlying raw pointer while consuming this wrapper. Read more
Return the underlying raw pointer. Read more
Return the underlying mutable raw pointer Read more
Executes the destructor for this type. Read more
Detection window size. Align to block size and block stride. Default value is Size(64,128).
Block size in pixels. Align to cell size. Default value is Size(16,16).
Block stride. It must be a multiple of cell size. Default value is Size(8,8).
Cell size. Default value is Size(8,8).
Number of bins used in the calculation of histogram of gradients. Default value is 9.
not documented
Gaussian smoothing window parameter.
histogramNormType
L2-Hys normalization method shrinkage.
Flag to specify whether the gamma correction preprocessing is required or not.
coefficients for the linear SVM classifier.
coefficients for the linear SVM classifier used when OpenCL is enabled
not documented
Maximum number of detection window increases. Default value is 64
Indicates signed gradient will be used or not
@example samples/cpp/peopledetect.cpp / Sets coefficients for the linear SVM classifier. Read more
Reads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file node. Read more
loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file Read more
Detection window size. Align to block size and block stride. Default value is Size(64,128).
Block size in pixels. Align to cell size. Default value is Size(16,16).
Block stride. It must be a multiple of cell size. Default value is Size(8,8).
Cell size. Default value is Size(8,8).
Number of bins used in the calculation of histogram of gradients. Default value is 9.
not documented
Gaussian smoothing window parameter.
histogramNormType
L2-Hys normalization method shrinkage.
Flag to specify whether the gamma correction preprocessing is required or not.
coefficients for the linear SVM classifier.
coefficients for the linear SVM classifier used when OpenCL is enabled
not documented
Maximum number of detection window increases. Default value is 64
Indicates signed gradient will be used or not
Returns the number of coefficients required for the classification.
Checks if detector size equal to descriptor size.
Returns winSigma value
Stores HOGDescriptor parameters and coefficients for the linear SVM classifier in a file storage. Read more
saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file Read more
clones the HOGDescriptor Read more
@example samples/cpp/train_HOG.cpp / Computes HOG descriptors of given image. Read more
Performs object detection without a multi-scale window. Read more
Performs object detection without a multi-scale window. Read more
Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles. Read more
Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles. Read more
Computes gradients and quantized gradient orientations. Read more
evaluate specified ROI and return confidence value for each location Read more
evaluate specified ROI and return confidence value for each location in multiple scales Read more
Groups the object candidate rectangles. Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.