Struct opencv::dnn::TextDetectionModel_DB
source · pub struct TextDetectionModel_DB { /* private fields */ }Expand description
This class represents high-level API for text detection DL networks compatible with DB model.
Related publications: liao2020real Paper: https://arxiv.org/abs/1911.08947 For more information about the hyper-parameters setting, please refer to https://github.com/MhLiao/DB
Configurable parameters:
- (float) binaryThreshold - The threshold of the binary map. It is usually set to 0.3.
- (float) polygonThreshold - The threshold of text polygons. It is usually set to 0.5, 0.6, and 0.7. Default is 0.5f
- (double) unclipRatio - The unclip ratio of the detected text region, which determines the output size. It is usually set to 2.0.
- (int) maxCandidates - The max number of the output results.
Implementations§
source§impl TextDetectionModel_DB
impl TextDetectionModel_DB
pub fn default() -> Result<TextDetectionModel_DB>
sourcepub fn new(network: &Net) -> Result<TextDetectionModel_DB>
pub fn new(network: &Net) -> Result<TextDetectionModel_DB>
sourcepub fn new_1(model: &str, config: &str) -> Result<TextDetectionModel_DB>
pub fn new_1(model: &str, config: &str) -> Result<TextDetectionModel_DB>
Create text detection model from network represented in one of the supported formats. An order of @p model and @p config arguments does not matter.
Parameters
- model: Binary file contains trained weights.
- config: Text file contains network configuration.
C++ default parameters
- config: “”
Trait Implementations§
source§impl Boxed for TextDetectionModel_DB
impl Boxed for TextDetectionModel_DB
source§impl Drop for TextDetectionModel_DB
impl Drop for TextDetectionModel_DB
source§impl From<TextDetectionModel_DB> for Model
impl From<TextDetectionModel_DB> for Model
source§fn from(s: TextDetectionModel_DB) -> Self
fn from(s: TextDetectionModel_DB) -> Self
Converts to this type from the input type.
source§impl From<TextDetectionModel_DB> for TextDetectionModel
impl From<TextDetectionModel_DB> for TextDetectionModel
source§fn from(s: TextDetectionModel_DB) -> Self
fn from(s: TextDetectionModel_DB) -> Self
Converts to this type from the input type.
source§impl ModelTrait for TextDetectionModel_DB
impl ModelTrait for TextDetectionModel_DB
fn as_raw_mut_Model(&mut self) -> *mut c_void
source§fn set_input_size_1(&mut self, width: i32, height: i32) -> Result<Model>
fn set_input_size_1(&mut self, width: i32, height: i32) -> Result<Model>
Set input size for frame. Read more
source§fn set_input_mean(&mut self, mean: Scalar) -> Result<Model>
fn set_input_mean(&mut self, mean: Scalar) -> Result<Model>
Set mean value for frame. Read more
source§fn set_input_scale(&mut self, scale: f64) -> Result<Model>
fn set_input_scale(&mut self, scale: f64) -> Result<Model>
Set scalefactor value for frame. Read more
source§fn set_input_swap_rb(&mut self, swap_rb: bool) -> Result<Model>
fn set_input_swap_rb(&mut self, swap_rb: bool) -> Result<Model>
Set flag swapRB for frame. Read more
source§fn set_input_params(
&mut self,
scale: f64,
size: Size,
mean: Scalar,
swap_rb: bool,
crop: bool
) -> Result<()>
fn set_input_params(
&mut self,
scale: f64,
size: Size,
mean: Scalar,
swap_rb: bool,
crop: bool
) -> Result<()>
Set preprocessing parameters for frame. Read more
fn get_network__1(&mut self) -> Result<Net>
source§impl ModelTraitConst for TextDetectionModel_DB
impl ModelTraitConst for TextDetectionModel_DB
fn as_raw_Model(&self) -> *const c_void
source§fn predict(
&self,
frame: &dyn ToInputArray,
outs: &mut dyn ToOutputArray
) -> Result<()>
fn predict(
&self,
frame: &dyn ToInputArray,
outs: &mut dyn ToOutputArray
) -> Result<()>
Given the @p input frame, create input blob, run net and return the output @p blobs. Read more
fn get_network_(&self) -> Result<Net>
source§impl TextDetectionModelTrait for TextDetectionModel_DB
impl TextDetectionModelTrait for TextDetectionModel_DB
fn as_raw_mut_TextDetectionModel(&mut self) -> *mut c_void
source§impl TextDetectionModelTraitConst for TextDetectionModel_DB
impl TextDetectionModelTraitConst for TextDetectionModel_DB
fn as_raw_TextDetectionModel(&self) -> *const c_void
source§fn detect_with_confidences(
&self,
frame: &dyn ToInputArray,
detections: &mut Vector<Vector<Point>>,
confidences: &mut Vector<f32>
) -> Result<()>
fn detect_with_confidences(
&self,
frame: &dyn ToInputArray,
detections: &mut Vector<Vector<Point>>,
confidences: &mut Vector<f32>
) -> Result<()>
Performs detection Read more
source§fn detect(
&self,
frame: &dyn ToInputArray,
detections: &mut Vector<Vector<Point>>
) -> Result<()>
fn detect(
&self,
frame: &dyn ToInputArray,
detections: &mut Vector<Vector<Point>>
) -> Result<()>
Performs detection Read more
source§fn detect_text_rectangles(
&self,
frame: &dyn ToInputArray,
detections: &mut Vector<RotatedRect>,
confidences: &mut Vector<f32>
) -> Result<()>
fn detect_text_rectangles(
&self,
frame: &dyn ToInputArray,
detections: &mut Vector<RotatedRect>,
confidences: &mut Vector<f32>
) -> Result<()>
Performs detection Read more
source§fn detect_text_rectangles_1(
&self,
frame: &dyn ToInputArray,
detections: &mut Vector<RotatedRect>
) -> Result<()>
fn detect_text_rectangles_1(
&self,
frame: &dyn ToInputArray,
detections: &mut Vector<RotatedRect>
) -> Result<()>
Performs detection Read more