Implementations
sourceimpl PtrOfEM
impl PtrOfEM
pub fn as_raw_PtrOfEM(&self) -> *const c_void
pub fn as_raw_mut_PtrOfEM(&mut self) -> *mut c_void
Trait Implementations
sourceimpl AlgorithmTrait for PtrOfEM
impl AlgorithmTrait for PtrOfEM
sourceimpl AlgorithmTraitConst for PtrOfEM
impl AlgorithmTraitConst for PtrOfEM
fn as_raw_Algorithm(&self) -> *const c_void
sourcefn write(&self, fs: &mut FileStorage) -> Result<()>
fn write(&self, fs: &mut FileStorage) -> Result<()>
Stores algorithm parameters in a file storage
sourcefn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
simplified API for language bindings
Stores algorithm parameters in a file storage Read more
sourcefn empty(&self) -> Result<bool>
fn empty(&self) -> Result<bool>
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
sourcefn save(&self, filename: &str) -> Result<()>
fn save(&self, filename: &str) -> Result<()>
Saves the algorithm to a file.
In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs). Read more
sourcefn get_default_name(&self) -> Result<String>
fn get_default_name(&self) -> Result<String>
Returns the algorithm string identifier.
This string is used as top level xml/yml node tag when the object is saved to a file or string. Read more
sourceimpl EM for PtrOfEM
impl EM for PtrOfEM
fn as_raw_mut_EM(&mut self) -> *mut c_void
sourcefn set_clusters_number(&mut self, val: i32) -> Result<()>
fn set_clusters_number(&mut self, val: i32) -> Result<()>
The number of mixture components in the Gaussian mixture model.
Default value of the parameter is EM::DEFAULT_NCLUSTERS=5. Some of %EM implementation could
determine the optimal number of mixtures within a specified value range, but that is not the
case in ML yet. Read more
sourcefn set_covariance_matrix_type(&mut self, val: i32) -> Result<()>
fn set_covariance_matrix_type(&mut self, val: i32) -> Result<()>
Constraint on covariance matrices which defines type of matrices.
See EM::Types. Read more
sourcefn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
The termination criteria of the %EM algorithm.
The %EM algorithm can be terminated by the number of iterations termCrit.maxCount (number of
M-steps) or when relative change of likelihood logarithm is less than termCrit.epsilon. Default
maximum number of iterations is EM::DEFAULT_MAX_ITERS=100. Read more
sourcefn train_em(
&mut self,
samples: &dyn ToInputArray,
log_likelihoods: &mut dyn ToOutputArray,
labels: &mut dyn ToOutputArray,
probs: &mut dyn ToOutputArray
) -> Result<bool>
fn train_em(
&mut self,
samples: &dyn ToInputArray,
log_likelihoods: &mut dyn ToOutputArray,
labels: &mut dyn ToOutputArray,
probs: &mut dyn ToOutputArray
) -> Result<bool>
Estimate the Gaussian mixture parameters from a samples set. Read more
sourcefn train_e(
&mut self,
samples: &dyn ToInputArray,
means0: &dyn ToInputArray,
covs0: &dyn ToInputArray,
weights0: &dyn ToInputArray,
log_likelihoods: &mut dyn ToOutputArray,
labels: &mut dyn ToOutputArray,
probs: &mut dyn ToOutputArray
) -> Result<bool>
fn train_e(
&mut self,
samples: &dyn ToInputArray,
means0: &dyn ToInputArray,
covs0: &dyn ToInputArray,
weights0: &dyn ToInputArray,
log_likelihoods: &mut dyn ToOutputArray,
labels: &mut dyn ToOutputArray,
probs: &mut dyn ToOutputArray
) -> Result<bool>
Estimate the Gaussian mixture parameters from a samples set. Read more
sourcefn train_m(
&mut self,
samples: &dyn ToInputArray,
probs0: &dyn ToInputArray,
log_likelihoods: &mut dyn ToOutputArray,
labels: &mut dyn ToOutputArray,
probs: &mut dyn ToOutputArray
) -> Result<bool>
fn train_m(
&mut self,
samples: &dyn ToInputArray,
probs0: &dyn ToInputArray,
log_likelihoods: &mut dyn ToOutputArray,
labels: &mut dyn ToOutputArray,
probs: &mut dyn ToOutputArray
) -> Result<bool>
Estimate the Gaussian mixture parameters from a samples set. Read more
sourceimpl EMConst for PtrOfEM
impl EMConst for PtrOfEM
fn as_raw_EM(&self) -> *const c_void
sourcefn get_clusters_number(&self) -> Result<i32>
fn get_clusters_number(&self) -> Result<i32>
The number of mixture components in the Gaussian mixture model.
Default value of the parameter is EM::DEFAULT_NCLUSTERS=5. Some of %EM implementation could
determine the optimal number of mixtures within a specified value range, but that is not the
case in ML yet. Read more
sourcefn get_covariance_matrix_type(&self) -> Result<i32>
fn get_covariance_matrix_type(&self) -> Result<i32>
Constraint on covariance matrices which defines type of matrices.
See EM::Types. Read more
sourcefn get_term_criteria(&self) -> Result<TermCriteria>
fn get_term_criteria(&self) -> Result<TermCriteria>
The termination criteria of the %EM algorithm.
The %EM algorithm can be terminated by the number of iterations termCrit.maxCount (number of
M-steps) or when relative change of likelihood logarithm is less than termCrit.epsilon. Default
maximum number of iterations is EM::DEFAULT_MAX_ITERS=100. Read more
sourcefn get_weights(&self) -> Result<Mat>
fn get_weights(&self) -> Result<Mat>
Returns weights of the mixtures Read more
sourcefn get_means(&self) -> Result<Mat>
fn get_means(&self) -> Result<Mat>
Returns the cluster centers (means of the Gaussian mixture) Read more
sourcefn get_covs(&self, covs: &mut Vector<Mat>) -> Result<()>
fn get_covs(&self, covs: &mut Vector<Mat>) -> Result<()>
Returns covariation matrices Read more
sourcefn predict(
&self,
samples: &dyn ToInputArray,
results: &mut dyn ToOutputArray,
flags: i32
) -> Result<f32>
fn predict(
&self,
samples: &dyn ToInputArray,
results: &mut dyn ToOutputArray,
flags: i32
) -> Result<f32>
Returns posterior probabilities for the provided samples Read more
sourcefn predict2(
&self,
sample: &dyn ToInputArray,
probs: &mut dyn ToOutputArray
) -> Result<Vec2d>
fn predict2(
&self,
sample: &dyn ToInputArray,
probs: &mut dyn ToOutputArray
) -> Result<Vec2d>
Returns a likelihood logarithm value and an index of the most probable mixture component
for the given sample. Read more
sourceimpl StatModel for PtrOfEM
impl StatModel for PtrOfEM
fn as_raw_mut_StatModel(&mut self) -> *mut c_void
sourcefn train_with_data(
&mut self,
train_data: &Ptr<dyn TrainData>,
flags: i32
) -> Result<bool>
fn train_with_data(
&mut self,
train_data: &Ptr<dyn TrainData>,
flags: i32
) -> Result<bool>
Trains the statistical model Read more
sourcefn train(
&mut self,
samples: &dyn ToInputArray,
layout: i32,
responses: &dyn ToInputArray
) -> Result<bool>
fn train(
&mut self,
samples: &dyn ToInputArray,
layout: i32,
responses: &dyn ToInputArray
) -> Result<bool>
Trains the statistical model Read more
sourceimpl StatModelConst for PtrOfEM
impl StatModelConst for PtrOfEM
fn as_raw_StatModel(&self) -> *const c_void
sourcefn get_var_count(&self) -> Result<i32>
fn get_var_count(&self) -> Result<i32>
Returns the number of variables in training samples
fn empty(&self) -> Result<bool>
sourcefn is_trained(&self) -> Result<bool>
fn is_trained(&self) -> Result<bool>
Returns true if the model is trained
sourcefn is_classifier(&self) -> Result<bool>
fn is_classifier(&self) -> Result<bool>
Returns true if the model is classifier
sourcefn calc_error(
&self,
data: &Ptr<dyn TrainData>,
test: bool,
resp: &mut dyn ToOutputArray
) -> Result<f32>
fn calc_error(
&self,
data: &Ptr<dyn TrainData>,
test: bool,
resp: &mut dyn ToOutputArray
) -> Result<f32>
Computes error on the training or test dataset Read more
sourcefn predict(
&self,
samples: &dyn ToInputArray,
results: &mut dyn ToOutputArray,
flags: i32
) -> Result<f32>
fn predict(
&self,
samples: &dyn ToInputArray,
results: &mut dyn ToOutputArray,
flags: i32
) -> Result<f32>
Predicts response(s) for the provided sample(s) Read more