Type Definition opencv::types::PtrOfKNearest
source · [−]Implementations
sourceimpl PtrOfKNearest
impl PtrOfKNearest
pub fn as_raw_PtrOfKNearest(&self) -> *const c_void
pub fn as_raw_mut_PtrOfKNearest(&mut self) -> *mut c_void
Trait Implementations
sourceimpl AlgorithmTrait for PtrOfKNearest
impl AlgorithmTrait for PtrOfKNearest
sourceimpl AlgorithmTraitConst for PtrOfKNearest
impl AlgorithmTraitConst for PtrOfKNearest
fn as_raw_Algorithm(&self) -> *const c_void
sourcefn write(&self, fs: &mut FileStorage) -> Result<()>
fn write(&self, fs: &mut FileStorage) -> Result<()>
Stores algorithm parameters in a file storage
sourcefn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>
simplified API for language bindings Stores algorithm parameters in a file storage Read more
sourcefn empty(&self) -> Result<bool>
fn empty(&self) -> Result<bool>
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
sourcefn save(&self, filename: &str) -> Result<()>
fn save(&self, filename: &str) -> Result<()>
Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs). Read more
sourcefn get_default_name(&self) -> Result<String>
fn get_default_name(&self) -> Result<String>
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string. Read more
sourceimpl KNearest for PtrOfKNearest
impl KNearest for PtrOfKNearest
fn as_raw_mut_KNearest(&mut self) -> *mut c_void
sourcefn set_default_k(&mut self, val: i32) -> Result<()>
fn set_default_k(&mut self, val: i32) -> Result<()>
Default number of neighbors to use in predict method. Read more
sourceimpl KNearestConst for PtrOfKNearest
impl KNearestConst for PtrOfKNearest
fn as_raw_KNearest(&self) -> *const c_void
sourcefn get_default_k(&self) -> Result<i32>
fn get_default_k(&self) -> Result<i32>
Default number of neighbors to use in predict method. Read more
sourcefn get_is_classifier(&self) -> Result<bool>
fn get_is_classifier(&self) -> Result<bool>
Whether classification or regression model should be trained. Read more
sourcefn get_algorithm_type(&self) -> Result<i32>
fn get_algorithm_type(&self) -> Result<i32>
%Algorithm type, one of KNearest::Types. Read more
sourcefn find_nearest(
&self,
samples: &dyn ToInputArray,
k: i32,
results: &mut dyn ToOutputArray,
neighbor_responses: &mut dyn ToOutputArray,
dist: &mut dyn ToOutputArray
) -> Result<f32>
fn find_nearest(
&self,
samples: &dyn ToInputArray,
k: i32,
results: &mut dyn ToOutputArray,
neighbor_responses: &mut dyn ToOutputArray,
dist: &mut dyn ToOutputArray
) -> Result<f32>
Finds the neighbors and predicts responses for input vectors. Read more
sourceimpl StatModel for PtrOfKNearest
impl StatModel for PtrOfKNearest
fn as_raw_mut_StatModel(&mut self) -> *mut c_void
sourcefn train_with_data(
&mut self,
train_data: &Ptr<dyn TrainData>,
flags: i32
) -> Result<bool>
fn train_with_data(
&mut self,
train_data: &Ptr<dyn TrainData>,
flags: i32
) -> Result<bool>
Trains the statistical model Read more
sourcefn train(
&mut self,
samples: &dyn ToInputArray,
layout: i32,
responses: &dyn ToInputArray
) -> Result<bool>
fn train(
&mut self,
samples: &dyn ToInputArray,
layout: i32,
responses: &dyn ToInputArray
) -> Result<bool>
Trains the statistical model Read more
sourceimpl StatModelConst for PtrOfKNearest
impl StatModelConst for PtrOfKNearest
fn as_raw_StatModel(&self) -> *const c_void
sourcefn get_var_count(&self) -> Result<i32>
fn get_var_count(&self) -> Result<i32>
Returns the number of variables in training samples
fn empty(&self) -> Result<bool>
sourcefn is_trained(&self) -> Result<bool>
fn is_trained(&self) -> Result<bool>
Returns true if the model is trained
sourcefn is_classifier(&self) -> Result<bool>
fn is_classifier(&self) -> Result<bool>
Returns true if the model is classifier
sourcefn calc_error(
&self,
data: &Ptr<dyn TrainData>,
test: bool,
resp: &mut dyn ToOutputArray
) -> Result<f32>
fn calc_error(
&self,
data: &Ptr<dyn TrainData>,
test: bool,
resp: &mut dyn ToOutputArray
) -> Result<f32>
Computes error on the training or test dataset Read more
sourcefn predict(
&self,
samples: &dyn ToInputArray,
results: &mut dyn ToOutputArray,
flags: i32
) -> Result<f32>
fn predict(
&self,
samples: &dyn ToInputArray,
results: &mut dyn ToOutputArray,
flags: i32
) -> Result<f32>
Predicts response(s) for the provided sample(s) Read more