Struct opencv::dnn::TextRecognitionModel [−][src]
pub struct TextRecognitionModel { /* fields omitted */ }Expand description
This class represents high-level API for text recognition networks.
TextRecognitionModel allows to set params for preprocessing input image. TextRecognitionModel creates net from file with trained weights and config, sets preprocessing input, runs forward pass and return recognition result. For TextRecognitionModel, CRNN-CTC is supported.
Implementations
Create Text Recognition model from deep learning network Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
Parameters
- network: Net object
Create text recognition model from network represented in one of the supported formats Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
Parameters
- model: Binary file contains trained weights
- config: Text file contains network configuration
C++ default parameters
- config: “”
Trait Implementations
Performs the conversion.
Given the @p input frame, create input blob, run net and return the output @p blobs. Read more
Set the decoding method of translating the network output into string Read more
fn set_decode_opts_ctc_prefix_beam_search(
&mut self,
beam_size: i32,
voc_prune_size: i32
) -> Result<TextRecognitionModel>
fn set_decode_opts_ctc_prefix_beam_search(
&mut self,
beam_size: i32,
voc_prune_size: i32
) -> Result<TextRecognitionModel>
Set the decoding method options for "CTC-prefix-beam-search" decode usage Read more
Set the vocabulary for recognition. Read more
Get the decoding method Read more
Get the vocabulary for recognition. Read more
Given the @p input frame, create input blob, run net and return recognition result Read more
fn recognize_1(
&self,
frame: &dyn ToInputArray,
roi_rects: &dyn ToInputArray,
results: &mut Vector<String>
) -> Result<()>
fn recognize_1(
&self,
frame: &dyn ToInputArray,
roi_rects: &dyn ToInputArray,
results: &mut Vector<String>
) -> Result<()>
Given the @p input frame, create input blob, run net and return recognition result Read more
