[−][src]Struct opencv::dnn::ResizeLayer
Resize input 4-dimensional blob by nearest neighbor or bilinear strategy.
Layer is used to support TensorFlow's resize_nearest_neighbor and resize_bilinear ops.
Trait Implementations
impl Algorithm for ResizeLayer
[src]
fn clear(&mut self) -> Result<()>
[src]
Clears the algorithm state
fn empty(&self) -> Result<bool>
[src]
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
fn save(&self, filename: &str) -> Result<()>
[src]
Saves the algorithm to a file. In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs). Read more
fn get_default_name(&self) -> Result<String>
[src]
Returns the algorithm string identifier. This string is used as top level xml/yml node tag when the object is saved to a file or string. Read more
impl Layer for ResizeLayer
[src]
fn finalize(
&mut self,
inputs: &VectorOfMat,
outputs: &mut VectorOfMat
) -> Result<()>
[src]
&mut self,
inputs: &VectorOfMat,
outputs: &mut VectorOfMat
) -> Result<()>
Computes and sets internal parameters according to inputs, outputs and blobs. ## Parameters @param[in] inputs vector of already allocated input blobs @param[out] outputs vector of already allocated output blobs Read more
fn forward(
&mut self,
inputs: &VectorOfMat,
outputs: &mut VectorOfMat,
internals: &mut VectorOfMat
) -> Result<()>
[src]
&mut self,
inputs: &VectorOfMat,
outputs: &mut VectorOfMat,
internals: &mut VectorOfMat
) -> Result<()>
Given the @p input blobs, computes the output @p blobs. ## Parameters @param[in] inputs the input blobs. @param[out] outputs allocated output blobs, which will store results of the computation. @param[out] internals allocated internal blobs Read more
fn forward_fallback(
&mut self,
inputs: &VectorOfMat,
outputs: &mut VectorOfMat,
internals: &mut VectorOfMat
) -> Result<()>
[src]
&mut self,
inputs: &VectorOfMat,
outputs: &mut VectorOfMat,
internals: &mut VectorOfMat
) -> Result<()>
Given the @p input blobs, computes the output @p blobs. ## Parameters @param[in] inputs the input blobs. @param[out] outputs allocated output blobs, which will store results of the computation. @param[out] internals allocated internal blobs Read more
fn finalize_1(&mut self, inputs: &VectorOfMat) -> Result<VectorOfMat>
[src]
@overload @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead Read more
fn run(
&mut self,
inputs: &VectorOfMat,
outputs: &VectorOfMat,
internals: &VectorOfMat
) -> Result<()>
[src]
&mut self,
inputs: &VectorOfMat,
outputs: &VectorOfMat,
internals: &VectorOfMat
) -> Result<()>
Allocates layer and computes output. @deprecated This method will be removed in the future release. Read more
fn input_name_to_index(&mut self, input_name: &str) -> Result<i32>
[src]
Returns index of input blob into the input array. ## Parameters * inputName: label of input blob Read more
fn output_name_to_index(&mut self, output_name: &str) -> Result<i32>
[src]
Returns index of output blob in output array. @see inputNameToIndex() Read more
fn support_backend(&mut self, backend_id: i32) -> Result<bool>
[src]
Ask layer if it support specific backend for doing computations. ## Parameters @param[in] backendId computation backend identifier. @see Backend Read more
fn init_halide(
&mut self,
inputs: &VectorOfPtrOfBackendWrapper
) -> Result<PtrOfBackendNode>
[src]
&mut self,
inputs: &VectorOfPtrOfBackendWrapper
) -> Result<PtrOfBackendNode>
Returns Halide backend node. ## Parameters @param[in] inputs Input Halide buffers. @see BackendNode, BackendWrapper Read more
fn init_inf_engine(
&mut self,
inputs: &VectorOfPtrOfBackendWrapper
) -> Result<PtrOfBackendNode>
[src]
&mut self,
inputs: &VectorOfPtrOfBackendWrapper
) -> Result<PtrOfBackendNode>
fn try_attach(&mut self, node: &PtrOfBackendNode) -> Result<PtrOfBackendNode>
[src]
Implement layers fusing. ## Parameters @param[in] node Backend node of bottom layer. @see BackendNode Read more
fn set_activation(&mut self, layer: &PtrOfActivationLayer) -> Result<bool>
[src]
Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case. ## Parameters @param[in] layer The subsequent activation layer. Read more
fn get_scale_shift(&self, scale: &Mat, shift: &Mat) -> Result<()>
[src]
Returns parameters of layers with channel-wise multiplication and addition. ## Parameters @param[out] scale Channel-wise multipliers. Total number of values should be equal to number of channels. @param[out] shift Channel-wise offsets. Total number of values should be equal to number of channels. Read more
fn unset_attached(&mut self) -> Result<()>
[src]
"Deattaches" all the layers, attached to particular layer.
fn get_memory_shapes(
&self,
inputs: &VectorOfVectorOfint,
required_outputs: i32,
outputs: &VectorOfVectorOfint,
internals: &VectorOfVectorOfint
) -> Result<bool>
[src]
&self,
inputs: &VectorOfVectorOfint,
required_outputs: i32,
outputs: &VectorOfVectorOfint,
internals: &VectorOfVectorOfint
) -> Result<bool>
fn get_flops(
&self,
inputs: &VectorOfVectorOfint,
outputs: &VectorOfVectorOfint
) -> Result<i64>
[src]
&self,
inputs: &VectorOfVectorOfint,
outputs: &VectorOfVectorOfint
) -> Result<i64>
impl Drop for ResizeLayer
[src]
Auto Trait Implementations
impl !Send for ResizeLayer
impl !Sync for ResizeLayer
Blanket Implementations
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,