Trait opencv::ml::prelude::LogisticRegression [−][src]
pub trait LogisticRegression: LogisticRegressionConst + StatModel {
fn as_raw_mut_LogisticRegression(&mut self) -> *mut c_void;
fn set_learning_rate(&mut self, val: f64) -> Result<()> { ... }
fn set_iterations(&mut self, val: i32) -> Result<()> { ... }
fn set_regularization(&mut self, val: i32) -> Result<()> { ... }
fn set_train_method(&mut self, val: i32) -> Result<()> { ... }
fn set_mini_batch_size(&mut self, val: i32) -> Result<()> { ... }
fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()> { ... }
}
Required methods
fn as_raw_mut_LogisticRegression(&mut self) -> *mut c_void
Provided methods
fn set_learning_rate(&mut self, val: f64) -> Result<()>
fn set_learning_rate(&mut self, val: f64) -> Result<()>
fn set_iterations(&mut self, val: i32) -> Result<()>
fn set_iterations(&mut self, val: i32) -> Result<()>
fn set_regularization(&mut self, val: i32) -> Result<()>
fn set_regularization(&mut self, val: i32) -> Result<()>
Kind of regularization to be applied. See LogisticRegression::RegKinds.
See also
setRegularization getRegularization
fn set_train_method(&mut self, val: i32) -> Result<()>
fn set_train_method(&mut self, val: i32) -> Result<()>
Kind of training method used. See LogisticRegression::Methods.
See also
setTrainMethod getTrainMethod
fn set_mini_batch_size(&mut self, val: i32) -> Result<()>
fn set_mini_batch_size(&mut self, val: i32) -> Result<()>
Specifies the number of training samples taken in each step of Mini-Batch Gradient Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It has to take values less than the total number of training samples.
See also
setMiniBatchSize getMiniBatchSize
fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>
Implementations
Creates empty model.
Creates Logistic Regression model with parameters given.
Loads and creates a serialized LogisticRegression from a file
Use LogisticRegression::save to serialize and store an LogisticRegression to disk. Load the LogisticRegression from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
Parameters
- filepath: path to serialized LogisticRegression
- nodeName: name of node containing the classifier
C++ default parameters
- node_name: String()