Struct opencv::dnn::TextDetectionModel [−][src]
#[repr(C)]pub struct TextDetectionModel { /* fields omitted */ }Expand description
Base class for text detection networks
Implementations
pub fn detect_with_confidences(
self,
frame: &dyn ToInputArray,
detections: &mut Vector<Vector<Point>>,
confidences: &mut Vector<f32>
) -> Result<()>
pub fn detect_with_confidences(
self,
frame: &dyn ToInputArray,
detections: &mut Vector<Vector<Point>>,
confidences: &mut Vector<f32>
) -> Result<()>
Performs detection
Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
Each result is quadrangle’s 4 points in this order:
- bottom-left
- top-left
- top-right
- bottom-right
Use cv::getPerspectiveTransform function to retrive image region without perspective transformations.
Note: If DL model doesn’t support that kind of output then result may be derived from detectTextRectangles() output.
Parameters
- frame: The input image
- detections:[out] array with detections’ quadrangles (4 points per result)
- confidences:[out] array with detection confidences
Performs detection
Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
Each result is quadrangle’s 4 points in this order:
- bottom-left
- top-left
- top-right
- bottom-right
Use cv::getPerspectiveTransform function to retrive image region without perspective transformations.
Note: If DL model doesn’t support that kind of output then result may be derived from detectTextRectangles() output.
Parameters
- frame: The input image
- detections:[out] array with detections’ quadrangles (4 points per result)
- confidences:[out] array with detection confidences
Overloaded parameters
pub fn detect_text_rectangles(
self,
frame: &dyn ToInputArray,
detections: &mut Vector<RotatedRect>,
confidences: &mut Vector<f32>
) -> Result<()>
pub fn detect_text_rectangles(
self,
frame: &dyn ToInputArray,
detections: &mut Vector<RotatedRect>,
confidences: &mut Vector<f32>
) -> Result<()>
Performs detection
Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
Each result is rotated rectangle.
Note: Result may be inaccurate in case of strong perspective transformations.
Parameters
- frame: the input image
- detections:[out] array with detections’ RotationRect results
- confidences:[out] array with detection confidences
pub fn detect_text_rectangles_1(
self,
frame: &dyn ToInputArray,
detections: &mut Vector<RotatedRect>
) -> Result<()>
pub fn detect_text_rectangles_1(
self,
frame: &dyn ToInputArray,
detections: &mut Vector<RotatedRect>
) -> Result<()>
Performs detection
Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
Each result is rotated rectangle.
Note: Result may be inaccurate in case of strong perspective transformations.
Parameters
- frame: the input image
- detections:[out] array with detections’ RotationRect results
- confidences:[out] array with detection confidences
Overloaded parameters
Trait Implementations
This method tests for self and other values to be equal, and is used
by ==. Read more
This method tests for !=.
Auto Trait Implementations
impl RefUnwindSafe for TextDetectionModel
impl Send for TextDetectionModel
impl Sync for TextDetectionModel
impl Unpin for TextDetectionModel
impl UnwindSafe for TextDetectionModel
Blanket Implementations
Mutably borrows from an owned value. Read more