Trait opencv::ml::prelude::SVMConst [−][src]
pub trait SVMConst: StatModelConst {
Show 14 methods
fn as_raw_SVM(&self) -> *const c_void;
fn get_type(&self) -> Result<i32> { ... }
fn get_gamma(&self) -> Result<f64> { ... }
fn get_coef0(&self) -> Result<f64> { ... }
fn get_degree(&self) -> Result<f64> { ... }
fn get_c(&self) -> Result<f64> { ... }
fn get_nu(&self) -> Result<f64> { ... }
fn get_p(&self) -> Result<f64> { ... }
fn get_class_weights(&self) -> Result<Mat> { ... }
fn get_term_criteria(&self) -> Result<TermCriteria> { ... }
fn get_kernel_type(&self) -> Result<i32> { ... }
fn get_support_vectors(&self) -> Result<Mat> { ... }
fn get_uncompressed_support_vectors(&self) -> Result<Mat> { ... }
fn get_decision_function(
&self,
i: i32,
alpha: &mut dyn ToOutputArray,
svidx: &mut dyn ToOutputArray
) -> Result<f64> { ... }
}
Expand description
Required methods
fn as_raw_SVM(&self) -> *const c_void
Provided methods
Parameter of a kernel function.
For SVM::POLY, SVM::RBF, SVM::SIGMOID or SVM::CHI2. Default value is 1.
See also
setGamma
Parameter coef0 of a kernel function. For SVM::POLY or SVM::SIGMOID. Default value is 0.
See also
setCoef0
fn get_degree(&self) -> Result<f64>
fn get_degree(&self) -> Result<f64>
Parameter C of a %SVM optimization problem. For SVM::C_SVC, SVM::EPS_SVR or SVM::NU_SVR. Default value is 0.
See also
setC
Parameter of a %SVM optimization problem.
For SVM::NU_SVC, SVM::ONE_CLASS or SVM::NU_SVR. Default value is 0.
See also
setNu
fn get_class_weights(&self) -> Result<Mat>
fn get_class_weights(&self) -> Result<Mat>
Optional weights in the SVM::C_SVC problem, assigned to particular classes.
They are multiplied by C so the parameter C of class i becomes classWeights(i) * C
. Thus
these weights affect the misclassification penalty for different classes. The larger weight,
the larger penalty on misclassification of data from the corresponding class. Default value is
empty Mat.
See also
setClassWeights
fn get_term_criteria(&self) -> Result<TermCriteria>
fn get_term_criteria(&self) -> Result<TermCriteria>
Termination criteria of the iterative %SVM training procedure which solves a partial
case of constrained quadratic optimization problem.
You can specify tolerance and/or the maximum number of iterations. Default value is
TermCriteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, FLT_EPSILON )
;
See also
setTermCriteria
fn get_kernel_type(&self) -> Result<i32>
fn get_kernel_type(&self) -> Result<i32>
Type of a %SVM kernel. See SVM::KernelTypes. Default value is SVM::RBF.
fn get_support_vectors(&self) -> Result<Mat>
fn get_support_vectors(&self) -> Result<Mat>
Retrieves all the support vectors
The method returns all the support vectors as a floating-point matrix, where support vectors are stored as matrix rows.
fn get_uncompressed_support_vectors(&self) -> Result<Mat>
fn get_uncompressed_support_vectors(&self) -> Result<Mat>
Retrieves all the uncompressed support vectors of a linear %SVM
The method returns all the uncompressed support vectors of a linear %SVM that the compressed support vector, used for prediction, was derived from. They are returned in a floating-point matrix, where the support vectors are stored as matrix rows.
fn get_decision_function(
&self,
i: i32,
alpha: &mut dyn ToOutputArray,
svidx: &mut dyn ToOutputArray
) -> Result<f64>
fn get_decision_function(
&self,
i: i32,
alpha: &mut dyn ToOutputArray,
svidx: &mut dyn ToOutputArray
) -> Result<f64>
Retrieves the decision function
Parameters
- i: the index of the decision function. If the problem solved is regression, 1-class or
2-class classification, then there will be just one decision function and the index should
always be 0. Otherwise, in the case of N-class classification, there will be
decision functions.
- alpha: the optional output vector for weights, corresponding to different support vectors. In the case of linear %SVM all the alpha’s will be 1’s.
- svidx: the optional output vector of indices of support vectors within the matrix of support vectors (which can be retrieved by SVM::getSupportVectors). In the case of linear %SVM each decision function consists of a single “compressed” support vector.
The method returns rho parameter of the decision function, a scalar subtracted from the weighted sum of kernel responses.