[−][src]Struct opencv::dnn::DetectionModel
This class represents high-level API for object detection networks.
DetectionModel allows to set params for preprocessing input image. DetectionModel creates net from file with trained weights and config, sets preprocessing input, runs forward pass and return result detections. For DetectionModel SSD, Faster R-CNN, YOLO topologies are supported.
Methods
impl DetectionModel[src]
pub fn as_raw_DetectionModel(&self) -> *mut c_void[src]
pub unsafe fn from_raw_ptr(ptr: *mut c_void) -> Self[src]
impl DetectionModel[src]
pub fn new(model: &str, config: &str) -> Result<DetectionModel>[src]
Create detection model from network represented in one of the supported formats. An order of @p model and @p config arguments does not matter.
Parameters
- model: Binary file contains trained weights.
- config: Text file contains network configuration.
C++ default parameters
- config: ""
pub fn new_1(network: &Net) -> Result<DetectionModel>[src]
Trait Implementations
impl DetectionModelTrait for DetectionModel[src]
fn as_raw_DetectionModel(&self) -> *mut c_void[src]
fn detect(
&mut self,
frame: &dyn ToInputArray,
class_ids: &mut VectorOfi32,
confidences: &mut VectorOff32,
boxes: &mut VectorOfRect,
conf_threshold: f32,
nms_threshold: f32
) -> Result<()>[src]
&mut self,
frame: &dyn ToInputArray,
class_ids: &mut VectorOfi32,
confidences: &mut VectorOff32,
boxes: &mut VectorOfRect,
conf_threshold: f32,
nms_threshold: f32
) -> Result<()>
impl Drop for DetectionModel[src]
impl ModelTrait for DetectionModel[src]
fn as_raw_Model(&self) -> *mut c_void[src]
fn set_input_size(&mut self, size: Size) -> Result<Model>[src]
fn set_input_size_1(&mut self, width: i32, height: i32) -> Result<Model>[src]
fn set_input_mean(&mut self, mean: Scalar) -> Result<Model>[src]
fn set_input_scale(&mut self, scale: f64) -> Result<Model>[src]
fn set_input_crop(&mut self, crop: bool) -> Result<Model>[src]
fn set_input_swap_rb(&mut self, swap_rb: bool) -> Result<Model>[src]
fn set_input_params(
&mut self,
scale: f64,
size: Size,
mean: Scalar,
swap_rb: bool,
crop: bool
) -> Result<()>[src]
&mut self,
scale: f64,
size: Size,
mean: Scalar,
swap_rb: bool,
crop: bool
) -> Result<()>
fn predict(
&mut self,
frame: &dyn ToInputArray,
outs: &mut dyn ToOutputArray
) -> Result<()>[src]
&mut self,
frame: &dyn ToInputArray,
outs: &mut dyn ToOutputArray
) -> Result<()>
impl NetTrait for DetectionModel[src]
fn as_raw_Net(&self) -> *mut c_void[src]
fn empty(&self) -> Result<bool>[src]
fn dump(&mut self) -> Result<String>[src]
fn dump_to_file(&mut self, path: &str) -> Result<()>[src]
fn add_layer(
&mut self,
name: &str,
typ: &str,
params: &mut LayerParams
) -> Result<i32>[src]
&mut self,
name: &str,
typ: &str,
params: &mut LayerParams
) -> Result<i32>
fn add_layer_to_prev(
&mut self,
name: &str,
typ: &str,
params: &mut LayerParams
) -> Result<i32>[src]
&mut self,
name: &str,
typ: &str,
params: &mut LayerParams
) -> Result<i32>
fn get_layer_id(&mut self, layer: &str) -> Result<i32>[src]
fn get_layer_names(&self) -> Result<VectorOfString>[src]
fn get_layer(&mut self, layer_id: Net_LayerId) -> Result<PtrOfLayer>[src]
fn get_layer_inputs(
&mut self,
layer_id: Net_LayerId
) -> Result<VectorOfPtrOfLayer>[src]
&mut self,
layer_id: Net_LayerId
) -> Result<VectorOfPtrOfLayer>
fn connect_first_second(&mut self, out_pin: &str, inp_pin: &str) -> Result<()>[src]
fn connect(
&mut self,
out_layer_id: i32,
out_num: i32,
inp_layer_id: i32,
inp_num: i32
) -> Result<()>[src]
&mut self,
out_layer_id: i32,
out_num: i32,
inp_layer_id: i32,
inp_num: i32
) -> Result<()>
fn set_inputs_names(&mut self, input_blob_names: &VectorOfString) -> Result<()>[src]
fn forward_single(&mut self, output_name: &str) -> Result<Mat>[src]
fn forward_async(&mut self, output_name: &str) -> Result<AsyncArray>[src]
fn forward_layer(
&mut self,
output_blobs: &mut dyn ToOutputArray,
output_name: &str
) -> Result<()>[src]
&mut self,
output_blobs: &mut dyn ToOutputArray,
output_name: &str
) -> Result<()>
fn forward(
&mut self,
output_blobs: &mut dyn ToOutputArray,
out_blob_names: &VectorOfString
) -> Result<()>[src]
&mut self,
output_blobs: &mut dyn ToOutputArray,
out_blob_names: &VectorOfString
) -> Result<()>
fn forward_and_retrieve(
&mut self,
output_blobs: &mut VectorOfVectorOfMat,
out_blob_names: &VectorOfString
) -> Result<()>[src]
&mut self,
output_blobs: &mut VectorOfVectorOfMat,
out_blob_names: &VectorOfString
) -> Result<()>
fn set_halide_scheduler(&mut self, scheduler: &str) -> Result<()>[src]
fn set_preferable_backend(&mut self, backend_id: i32) -> Result<()>[src]
fn set_preferable_target(&mut self, target_id: i32) -> Result<()>[src]
fn set_input(
&mut self,
blob: &dyn ToInputArray,
name: &str,
scalefactor: f64,
mean: Scalar
) -> Result<()>[src]
&mut self,
blob: &dyn ToInputArray,
name: &str,
scalefactor: f64,
mean: Scalar
) -> Result<()>
fn set_param(
&mut self,
layer: Net_LayerId,
num_param: i32,
blob: &Mat
) -> Result<()>[src]
&mut self,
layer: Net_LayerId,
num_param: i32,
blob: &Mat
) -> Result<()>
fn get_param(&mut self, layer: Net_LayerId, num_param: i32) -> Result<Mat>[src]
fn get_unconnected_out_layers(&self) -> Result<VectorOfi32>[src]
fn get_unconnected_out_layers_names(&self) -> Result<VectorOfString>[src]
fn get_layers_shapes(
&self,
net_input_shapes: &VectorOfMatShape,
layers_ids: &mut VectorOfi32,
in_layers_shapes: &mut VectorOfVectorOfMatShape,
out_layers_shapes: &mut VectorOfVectorOfMatShape
) -> Result<()>[src]
&self,
net_input_shapes: &VectorOfMatShape,
layers_ids: &mut VectorOfi32,
in_layers_shapes: &mut VectorOfVectorOfMatShape,
out_layers_shapes: &mut VectorOfVectorOfMatShape
) -> Result<()>
fn get_layers_shapes_1(
&self,
net_input_shape: &MatShape,
layers_ids: &mut VectorOfi32,
in_layers_shapes: &mut VectorOfVectorOfMatShape,
out_layers_shapes: &mut VectorOfVectorOfMatShape
) -> Result<()>[src]
&self,
net_input_shape: &MatShape,
layers_ids: &mut VectorOfi32,
in_layers_shapes: &mut VectorOfVectorOfMatShape,
out_layers_shapes: &mut VectorOfVectorOfMatShape
) -> Result<()>
fn get_layer_shapes(
&self,
net_input_shape: &MatShape,
layer_id: i32,
in_layer_shapes: &mut VectorOfMatShape,
out_layer_shapes: &mut VectorOfMatShape
) -> Result<()>[src]
&self,
net_input_shape: &MatShape,
layer_id: i32,
in_layer_shapes: &mut VectorOfMatShape,
out_layer_shapes: &mut VectorOfMatShape
) -> Result<()>
fn get_layer_shapes_1(
&self,
net_input_shapes: &VectorOfMatShape,
layer_id: i32,
in_layer_shapes: &mut VectorOfMatShape,
out_layer_shapes: &mut VectorOfMatShape
) -> Result<()>[src]
&self,
net_input_shapes: &VectorOfMatShape,
layer_id: i32,
in_layer_shapes: &mut VectorOfMatShape,
out_layer_shapes: &mut VectorOfMatShape
) -> Result<()>
fn get_flops(&self, net_input_shapes: &VectorOfMatShape) -> Result<i64>[src]
fn get_flops_1(&self, net_input_shape: &MatShape) -> Result<i64>[src]
fn get_flops_2(
&self,
layer_id: i32,
net_input_shapes: &VectorOfMatShape
) -> Result<i64>[src]
&self,
layer_id: i32,
net_input_shapes: &VectorOfMatShape
) -> Result<i64>
fn get_flops_3(&self, layer_id: i32, net_input_shape: &MatShape) -> Result<i64>[src]
fn get_layer_types(&self, layers_types: &mut VectorOfString) -> Result<()>[src]
fn get_layers_count(&self, layer_type: &str) -> Result<i32>[src]
fn get_memory_consumption(
&self,
net_input_shapes: &VectorOfMatShape,
weights: &mut size_t,
blobs: &mut size_t
) -> Result<()>[src]
&self,
net_input_shapes: &VectorOfMatShape,
weights: &mut size_t,
blobs: &mut size_t
) -> Result<()>
fn get_memory_consumption_1(
&self,
net_input_shape: &MatShape,
weights: &mut size_t,
blobs: &mut size_t
) -> Result<()>[src]
&self,
net_input_shape: &MatShape,
weights: &mut size_t,
blobs: &mut size_t
) -> Result<()>
fn get_memory_consumption_for_layer(
&self,
layer_id: i32,
net_input_shapes: &VectorOfMatShape,
weights: &mut size_t,
blobs: &mut size_t
) -> Result<()>[src]
&self,
layer_id: i32,
net_input_shapes: &VectorOfMatShape,
weights: &mut size_t,
blobs: &mut size_t
) -> Result<()>
fn get_memory_consumption_2(
&self,
layer_id: i32,
net_input_shape: &MatShape,
weights: &mut size_t,
blobs: &mut size_t
) -> Result<()>[src]
&self,
layer_id: i32,
net_input_shape: &MatShape,
weights: &mut size_t,
blobs: &mut size_t
) -> Result<()>
fn get_memory_consumption_for_layers(
&self,
net_input_shapes: &VectorOfMatShape,
layer_ids: &mut VectorOfi32,
weights: &mut VectorOfsize_t,
blobs: &mut VectorOfsize_t
) -> Result<()>[src]
&self,
net_input_shapes: &VectorOfMatShape,
layer_ids: &mut VectorOfi32,
weights: &mut VectorOfsize_t,
blobs: &mut VectorOfsize_t
) -> Result<()>
fn get_memory_consumption_3(
&self,
net_input_shape: &MatShape,
layer_ids: &mut VectorOfi32,
weights: &mut VectorOfsize_t,
blobs: &mut VectorOfsize_t
) -> Result<()>[src]
&self,
net_input_shape: &MatShape,
layer_ids: &mut VectorOfi32,
weights: &mut VectorOfsize_t,
blobs: &mut VectorOfsize_t
) -> Result<()>
fn enable_fusion(&mut self, fusion: bool) -> Result<()>[src]
fn get_perf_profile(&mut self, timings: &mut VectorOff64) -> Result<i64>[src]
impl Send for DetectionModel[src]
Auto Trait Implementations
impl RefUnwindSafe for DetectionModel
impl !Sync for DetectionModel
impl Unpin for DetectionModel
impl UnwindSafe for DetectionModel
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized, [src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized, [src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T[src]
impl<T> From<T> for T[src]
impl<T, U> Into<U> for T where
U: From<T>, [src]
U: From<T>,
impl<T, U> TryFrom<U> for T where
U: Into<T>, [src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>, [src]
U: TryFrom<T>,