pub struct ModelResponseProperties {
pub metadata: Option<Metadata>,
pub service_tier: Option<ServiceTier>,
pub temperature: Option<f32>,
pub top_p: Option<f32>,
pub user: Option<String>,
}
Fields§
§metadata: Option<Metadata>
§service_tier: Option<ServiceTier>
§temperature: Option<f32>
What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or top_p
but not both.
top_p: Option<f32>
An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature
but not both.
user: Option<String>
A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. Learn more.
Trait Implementations§
Source§impl Debug for ModelResponseProperties
impl Debug for ModelResponseProperties
Source§impl<'de> Deserialize<'de> for ModelResponseProperties
impl<'de> Deserialize<'de> for ModelResponseProperties
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
Auto Trait Implementations§
impl Freeze for ModelResponseProperties
impl RefUnwindSafe for ModelResponseProperties
impl Send for ModelResponseProperties
impl Sync for ModelResponseProperties
impl Unpin for ModelResponseProperties
impl UnwindSafe for ModelResponseProperties
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more