pub struct FineTuningJobHyperparameters {
pub batch_size: Option<Value>,
pub learning_rate_multiplier: Option<Value>,
pub n_epochs: Option<Value>,
}
Fields§
§batch_size: Option<Value>
Number of examples in each batch. A larger batch size means that model parameters are updated less frequently, but with lower variance.
learning_rate_multiplier: Option<Value>
Scaling factor for the learning rate. A smaller learning rate may be useful to avoid overfitting.
n_epochs: Option<Value>
The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset.
Trait Implementations§
Source§impl Debug for FineTuningJobHyperparameters
impl Debug for FineTuningJobHyperparameters
Source§impl<'de> Deserialize<'de> for FineTuningJobHyperparameters
impl<'de> Deserialize<'de> for FineTuningJobHyperparameters
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
Auto Trait Implementations§
impl Freeze for FineTuningJobHyperparameters
impl RefUnwindSafe for FineTuningJobHyperparameters
impl Send for FineTuningJobHyperparameters
impl Sync for FineTuningJobHyperparameters
impl Unpin for FineTuningJobHyperparameters
impl UnwindSafe for FineTuningJobHyperparameters
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more