pub struct CreateFineTuningJobRequest {
pub model: String,
pub training_file: String,
pub hyperparameters: Option<CreateFineTuningJobRequestHyperparameters>,
pub suffix: Option<String>,
pub validation_file: Option<String>,
pub integrations: Option<Vec<CreateFineTuningJobRequestIntegration>>,
pub seed: Option<i64>,
pub method: Option<FineTuneMethod>,
pub metadata: Option<Metadata>,
}
Fields§
§model: String
The name of the model to fine-tune. You can select one of the supported models.
training_file: String
The ID of an uploaded file that contains training data.
See upload file for how to upload a file.
Your dataset must be formatted as a JSONL file. Additionally, you must upload your file with the purpose fine-tune
.
The contents of the file should differ depending on if the model uses the chat, completions format, or if the fine-tuning method uses the preference format.
See the fine-tuning guide for more details.
hyperparameters: Option<CreateFineTuningJobRequestHyperparameters>
The hyperparameters used for the fine-tuning job.
This value is now deprecated in favor of method
, and should be passed in under the method
parameter.
suffix: Option<String>
A string of up to 64 characters that will be added to your fine-tuned model name.
For example, a suffix
of “custom-model-name” would produce a model name like ft:gpt-4o-mini:openai:custom-model-name:7p4lURel
.
validation_file: Option<String>
The ID of an uploaded file that contains validation data.
If you provide this file, the data is used to generate validation metrics periodically during fine-tuning. These metrics can be viewed in the fine-tuning results file. The same data should not be present in both train and validation files.
Your dataset must be formatted as a JSONL file. You must upload your file with the purpose fine-tune
.
See the fine-tuning guide for more details.
integrations: Option<Vec<CreateFineTuningJobRequestIntegration>>
A list of integrations to enable for your fine-tuning job.
seed: Option<i64>
The seed controls the reproducibility of the job. Passing in the same seed and job parameters should produce the same results, but may differ in rare cases. If a seed is not specified, one will be generated for you.
method: Option<FineTuneMethod>
§metadata: Option<Metadata>
Implementations§
Source§impl CreateFineTuningJobRequest
impl CreateFineTuningJobRequest
Sourcepub fn builder() -> CreateFineTuningJobRequestBuilder<((), (), (), (), (), (), (), (), ())>
pub fn builder() -> CreateFineTuningJobRequestBuilder<((), (), (), (), (), (), (), (), ())>
Create a builder for building CreateFineTuningJobRequest
.
On the builder, call .model(...)
, .training_file(...)
, .hyperparameters(...)
(optional), .suffix(...)
(optional), .validation_file(...)
(optional), .integrations(...)
(optional), .seed(...)
(optional), .method(...)
(optional), .metadata(...)
(optional) to set the values of the fields.
Finally, call .build()
to create the instance of CreateFineTuningJobRequest
.
Trait Implementations§
Source§impl Clone for CreateFineTuningJobRequest
impl Clone for CreateFineTuningJobRequest
Source§fn clone(&self) -> CreateFineTuningJobRequest
fn clone(&self) -> CreateFineTuningJobRequest
1.0.0 · Source§const fn clone_from(&mut self, source: &Self)
const fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Debug for CreateFineTuningJobRequest
impl Debug for CreateFineTuningJobRequest
Source§impl<'de> Deserialize<'de> for CreateFineTuningJobRequest
impl<'de> Deserialize<'de> for CreateFineTuningJobRequest
Source§fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
Source§impl PartialEq for CreateFineTuningJobRequest
impl PartialEq for CreateFineTuningJobRequest
Source§fn eq(&self, other: &CreateFineTuningJobRequest) -> bool
fn eq(&self, other: &CreateFineTuningJobRequest) -> bool
self
and other
values to be equal, and is used by ==
.