pub struct FineTuneReinforcementHyperparameters {
pub batch_size: Option<FineTuneReinforcementHyperparametersBatchSize>,
pub learning_rate_multiplier: Option<FineTuneReinforcementHyperparametersLearningRateMultiplier>,
pub n_epochs: Option<FineTuneReinforcementHyperparametersNEpochs>,
pub reasoning_effort: Option<FineTuneReinforcementHyperparametersReasoningEffort>,
pub compute_multiplier: Option<FineTuneReinforcementHyperparametersComputeMultiplier>,
pub eval_interval: Option<FineTuneReinforcementHyperparametersEvalInterval>,
pub eval_samples: Option<FineTuneReinforcementHyperparametersEvalSamples>,
}
Expand description
The hyperparameters used for the reinforcement fine-tuning job.
Fields§
§batch_size: Option<FineTuneReinforcementHyperparametersBatchSize>
Number of examples in each batch. A larger batch size means that model parameters are updated less frequently, but with lower variance.
learning_rate_multiplier: Option<FineTuneReinforcementHyperparametersLearningRateMultiplier>
Scaling factor for the learning rate. A smaller learning rate may be useful to avoid overfitting.
n_epochs: Option<FineTuneReinforcementHyperparametersNEpochs>
The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset.
reasoning_effort: Option<FineTuneReinforcementHyperparametersReasoningEffort>
Level of reasoning effort.
compute_multiplier: Option<FineTuneReinforcementHyperparametersComputeMultiplier>
Multiplier on amount of compute used for exploring search space during training.
eval_interval: Option<FineTuneReinforcementHyperparametersEvalInterval>
The number of training steps between evaluation runs.
eval_samples: Option<FineTuneReinforcementHyperparametersEvalSamples>
Number of evaluation samples to generate per training step.
Implementations§
Source§impl FineTuneReinforcementHyperparameters
impl FineTuneReinforcementHyperparameters
Sourcepub fn builder() -> FineTuneReinforcementHyperparametersBuilder<((), (), (), (), (), (), ())>
pub fn builder() -> FineTuneReinforcementHyperparametersBuilder<((), (), (), (), (), (), ())>
Create a builder for building FineTuneReinforcementHyperparameters
.
On the builder, call .batch_size(...)
(optional), .learning_rate_multiplier(...)
(optional), .n_epochs(...)
(optional), .reasoning_effort(...)
(optional), .compute_multiplier(...)
(optional), .eval_interval(...)
(optional), .eval_samples(...)
(optional) to set the values of the fields.
Finally, call .build()
to create the instance of FineTuneReinforcementHyperparameters
.
Trait Implementations§
Source§impl Clone for FineTuneReinforcementHyperparameters
impl Clone for FineTuneReinforcementHyperparameters
Source§fn clone(&self) -> FineTuneReinforcementHyperparameters
fn clone(&self) -> FineTuneReinforcementHyperparameters
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Default for FineTuneReinforcementHyperparameters
impl Default for FineTuneReinforcementHyperparameters
Source§fn default() -> FineTuneReinforcementHyperparameters
fn default() -> FineTuneReinforcementHyperparameters
Source§impl<'de> Deserialize<'de> for FineTuneReinforcementHyperparameters
impl<'de> Deserialize<'de> for FineTuneReinforcementHyperparameters
Source§fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
Source§impl PartialEq for FineTuneReinforcementHyperparameters
impl PartialEq for FineTuneReinforcementHyperparameters
Source§fn eq(&self, other: &FineTuneReinforcementHyperparameters) -> bool
fn eq(&self, other: &FineTuneReinforcementHyperparameters) -> bool
self
and other
values to be equal, and is used by ==
.