pub struct EmbeddingsClient<'a, T = ()> { /* private fields */ }Expand description
Client for embeddings API.
Implementations§
Source§impl<T: Default + Send + Sync> EmbeddingsClient<'_, T>
impl<T: Default + Send + Sync> EmbeddingsClient<'_, T>
Sourcepub fn builder(&self, model: impl Into<String>) -> EmbeddingsBuilder
pub fn builder(&self, model: impl Into<String>) -> EmbeddingsBuilder
Start a builder for creating embeddings requests with the given model.
Sourcepub fn text(
&self,
model: impl Into<String>,
input: impl Into<String>,
) -> EmbeddingsBuilder
pub fn text( &self, model: impl Into<String>, input: impl Into<String>, ) -> EmbeddingsBuilder
Convenience helper for embedding a single string input.
Examples found in repository?
examples/langfuse.rs (lines 117-120)
31async fn main() -> Result<(), Box<dyn std::error::Error>> {
32 // Initialize tracing for logging
33 tracing_subscriber::fmt()
34 .with_env_filter(
35 tracing_subscriber::EnvFilter::from_default_env()
36 .add_directive("openai_ergonomic=debug".parse()?),
37 )
38 .init();
39
40 // 1. Build Langfuse exporter from environment variables
41 let exporter = ExporterBuilder::from_env()?.build()?;
42
43 // 2. Create tracer provider with batch processor
44 let provider = SdkTracerProvider::builder()
45 .with_span_processor(BatchSpanProcessor::builder(exporter, Tokio).build())
46 .build();
47
48 // Set as global provider
49 global::set_tracer_provider(provider.clone());
50
51 // 3. Get tracer and create interceptor
52 let tracer = provider.tracer("openai-ergonomic");
53 let langfuse_interceptor =
54 std::sync::Arc::new(LangfuseInterceptor::new(tracer, LangfuseConfig::new()));
55
56 // 4. Create the OpenAI client and add the Langfuse interceptor
57 // Keep a reference to the interceptor so we can update context later
58 let client = Client::from_env()?
59 .with_interceptor(Box::new(langfuse_interceptor.clone()))
60 .build();
61
62 println!(" OpenAI client initialized with Langfuse observability");
63 println!(" Traces will be sent to Langfuse for monitoring\n");
64
65 // Example 1: Simple chat completion
66 println!("Example 1: Simple chat completion");
67 println!("---------------------------------");
68 let chat_builder = client
69 .chat_simple("What is the capital of France? Answer in one word.")
70 .build()?;
71 let response = client.execute_chat(chat_builder).await?;
72 println!("Response: {:?}\n", response.content());
73
74 // Example 2: Chat completion with builder pattern
75 println!("Example 2: Chat with builder pattern");
76 println!("-------------------------------------");
77 let chat_builder = client
78 .chat()
79 .system("You are a helpful assistant that speaks like a pirate.")
80 .user("Tell me about the ocean in 2 sentences.")
81 .temperature(0.7)
82 .max_tokens(100)
83 .build()?;
84 let response = client.execute_chat(chat_builder).await?;
85 println!("Response: {:?}\n", response.content());
86
87 // Example 3: Multiple messages in a conversation
88 println!("Example 3: Conversation");
89 println!("-----------------------");
90 let chat_builder = client
91 .chat()
92 .system("You are a math tutor.")
93 .user("What is 2 + 2?")
94 .assistant("2 + 2 equals 4.")
95 .user("And what about 3 + 3?")
96 .build()?;
97 let response = client.execute_chat(chat_builder).await?;
98 println!("Response: {:?}\n", response.content());
99
100 // Example 4: Error handling (intentionally trigger an error)
101 println!("Example 4: Error handling");
102 println!("-------------------------");
103 // Create a builder with a non-existent model
104 let chat_builder = ChatCompletionBuilder::new("non-existent-model")
105 .user("This should fail")
106 .build()?;
107 let result = client.execute_chat(chat_builder).await;
108
109 match result {
110 Ok(_) => println!("Unexpected success"),
111 Err(e) => println!("Expected error captured: {e}\n"),
112 }
113
114 // Example 5: Embeddings
115 println!("Example 5: Embeddings");
116 println!("--------------------");
117 let embeddings_builder = client.embeddings().text(
118 "text-embedding-ada-002",
119 "The quick brown fox jumps over the lazy dog",
120 );
121 let embeddings = client.embeddings().create(embeddings_builder).await?;
122 println!("Generated {} embedding(s)\n", embeddings.data.len());
123
124 // Example 6: Using custom metadata via interceptor context
125 println!("Example 6: Custom metadata via interceptor context");
126 println!("---------------------------------------------------");
127
128 // Set session and user IDs on the interceptor's context
129 langfuse_interceptor.set_session_id("demo-session-123");
130 langfuse_interceptor.set_user_id("demo-user-456");
131 langfuse_interceptor.add_tags(vec!["example".to_string(), "demo".to_string()]);
132
133 let chat_builder = client
134 .chat_simple("Say 'Hello from custom session!'")
135 .build()?;
136 let response = client.execute_chat(chat_builder).await?;
137 println!("Response with custom metadata: {:?}\n", response.content());
138
139 // Clear context for subsequent calls
140 langfuse_interceptor.clear_context();
141
142 println!(" All examples completed!");
143 println!(" Check your Langfuse dashboard to see the traces");
144 println!(" - Look for traces with operation name 'chat'");
145 println!(" - Each trace includes request/response details, token usage, and timing");
146 println!(" - Example 6 will have custom session_id, user_id, and tags");
147
148 // Shutdown the tracer provider to flush all spans
149 println!("\n⏳ Flushing spans to Langfuse...");
150 provider.shutdown()?;
151
152 Ok(())
153}Sourcepub fn tokens<I>(
&self,
model: impl Into<String>,
tokens: I,
) -> EmbeddingsBuilderwhere
I: IntoIterator<Item = i32>,
pub fn tokens<I>(
&self,
model: impl Into<String>,
tokens: I,
) -> EmbeddingsBuilderwhere
I: IntoIterator<Item = i32>,
Convenience helper for embedding a single tokenized input.
Sourcepub async fn create(
&self,
builder: EmbeddingsBuilder,
) -> Result<CreateEmbeddingResponse>
pub async fn create( &self, builder: EmbeddingsBuilder, ) -> Result<CreateEmbeddingResponse>
Execute an embeddings request built with EmbeddingsBuilder.
Examples found in repository?
examples/langfuse.rs (line 121)
31async fn main() -> Result<(), Box<dyn std::error::Error>> {
32 // Initialize tracing for logging
33 tracing_subscriber::fmt()
34 .with_env_filter(
35 tracing_subscriber::EnvFilter::from_default_env()
36 .add_directive("openai_ergonomic=debug".parse()?),
37 )
38 .init();
39
40 // 1. Build Langfuse exporter from environment variables
41 let exporter = ExporterBuilder::from_env()?.build()?;
42
43 // 2. Create tracer provider with batch processor
44 let provider = SdkTracerProvider::builder()
45 .with_span_processor(BatchSpanProcessor::builder(exporter, Tokio).build())
46 .build();
47
48 // Set as global provider
49 global::set_tracer_provider(provider.clone());
50
51 // 3. Get tracer and create interceptor
52 let tracer = provider.tracer("openai-ergonomic");
53 let langfuse_interceptor =
54 std::sync::Arc::new(LangfuseInterceptor::new(tracer, LangfuseConfig::new()));
55
56 // 4. Create the OpenAI client and add the Langfuse interceptor
57 // Keep a reference to the interceptor so we can update context later
58 let client = Client::from_env()?
59 .with_interceptor(Box::new(langfuse_interceptor.clone()))
60 .build();
61
62 println!(" OpenAI client initialized with Langfuse observability");
63 println!(" Traces will be sent to Langfuse for monitoring\n");
64
65 // Example 1: Simple chat completion
66 println!("Example 1: Simple chat completion");
67 println!("---------------------------------");
68 let chat_builder = client
69 .chat_simple("What is the capital of France? Answer in one word.")
70 .build()?;
71 let response = client.execute_chat(chat_builder).await?;
72 println!("Response: {:?}\n", response.content());
73
74 // Example 2: Chat completion with builder pattern
75 println!("Example 2: Chat with builder pattern");
76 println!("-------------------------------------");
77 let chat_builder = client
78 .chat()
79 .system("You are a helpful assistant that speaks like a pirate.")
80 .user("Tell me about the ocean in 2 sentences.")
81 .temperature(0.7)
82 .max_tokens(100)
83 .build()?;
84 let response = client.execute_chat(chat_builder).await?;
85 println!("Response: {:?}\n", response.content());
86
87 // Example 3: Multiple messages in a conversation
88 println!("Example 3: Conversation");
89 println!("-----------------------");
90 let chat_builder = client
91 .chat()
92 .system("You are a math tutor.")
93 .user("What is 2 + 2?")
94 .assistant("2 + 2 equals 4.")
95 .user("And what about 3 + 3?")
96 .build()?;
97 let response = client.execute_chat(chat_builder).await?;
98 println!("Response: {:?}\n", response.content());
99
100 // Example 4: Error handling (intentionally trigger an error)
101 println!("Example 4: Error handling");
102 println!("-------------------------");
103 // Create a builder with a non-existent model
104 let chat_builder = ChatCompletionBuilder::new("non-existent-model")
105 .user("This should fail")
106 .build()?;
107 let result = client.execute_chat(chat_builder).await;
108
109 match result {
110 Ok(_) => println!("Unexpected success"),
111 Err(e) => println!("Expected error captured: {e}\n"),
112 }
113
114 // Example 5: Embeddings
115 println!("Example 5: Embeddings");
116 println!("--------------------");
117 let embeddings_builder = client.embeddings().text(
118 "text-embedding-ada-002",
119 "The quick brown fox jumps over the lazy dog",
120 );
121 let embeddings = client.embeddings().create(embeddings_builder).await?;
122 println!("Generated {} embedding(s)\n", embeddings.data.len());
123
124 // Example 6: Using custom metadata via interceptor context
125 println!("Example 6: Custom metadata via interceptor context");
126 println!("---------------------------------------------------");
127
128 // Set session and user IDs on the interceptor's context
129 langfuse_interceptor.set_session_id("demo-session-123");
130 langfuse_interceptor.set_user_id("demo-user-456");
131 langfuse_interceptor.add_tags(vec!["example".to_string(), "demo".to_string()]);
132
133 let chat_builder = client
134 .chat_simple("Say 'Hello from custom session!'")
135 .build()?;
136 let response = client.execute_chat(chat_builder).await?;
137 println!("Response with custom metadata: {:?}\n", response.content());
138
139 // Clear context for subsequent calls
140 langfuse_interceptor.clear_context();
141
142 println!(" All examples completed!");
143 println!(" Check your Langfuse dashboard to see the traces");
144 println!(" - Look for traces with operation name 'chat'");
145 println!(" - Each trace includes request/response details, token usage, and timing");
146 println!(" - Example 6 will have custom session_id, user_id, and tags");
147
148 // Shutdown the tracer provider to flush all spans
149 println!("\n⏳ Flushing spans to Langfuse...");
150 provider.shutdown()?;
151
152 Ok(())
153}Trait Implementations§
Source§impl<'a, T: Clone> Clone for EmbeddingsClient<'a, T>
impl<'a, T: Clone> Clone for EmbeddingsClient<'a, T>
Source§fn clone(&self) -> EmbeddingsClient<'a, T>
fn clone(&self) -> EmbeddingsClient<'a, T>
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl<'a, T: Debug> Debug for EmbeddingsClient<'a, T>
impl<'a, T: Debug> Debug for EmbeddingsClient<'a, T>
impl<'a, T: Copy> Copy for EmbeddingsClient<'a, T>
Auto Trait Implementations§
impl<'a, T> Freeze for EmbeddingsClient<'a, T>
impl<'a, T = ()> !RefUnwindSafe for EmbeddingsClient<'a, T>
impl<'a, T> Send for EmbeddingsClient<'a, T>
impl<'a, T> Sync for EmbeddingsClient<'a, T>
impl<'a, T> Unpin for EmbeddingsClient<'a, T>
impl<'a, T = ()> !UnwindSafe for EmbeddingsClient<'a, T>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more