pub struct VectorStoreSearchBuilder { /* private fields */ }Expand description
Builder for searching through vector stores.
Implementationsยง
Sourceยงimpl VectorStoreSearchBuilder
impl VectorStoreSearchBuilder
Sourcepub fn new(vector_store_id: impl Into<String>, query: impl Into<String>) -> Self
pub fn new(vector_store_id: impl Into<String>, query: impl Into<String>) -> Self
Create a new vector store search builder.
Examples found in repository?
examples/vector_stores.rs (line 493)
463fn run_advanced_search_patterns_example() -> Result<(), Error> {
464 println!("\n๐ Example 6: Advanced Search Patterns and Optimization");
465 println!("{}", "=".repeat(60));
466
467 // Create optimized search store
468 let optimized_store = VectorStoreBuilder::new()
469 .name("Advanced Search Optimization Store")
470 .add_file("file-technical-docs-001")
471 .add_file("file-user-feedback-002")
472 .add_file("file-performance-data-003")
473 .add_file("file-best-practices-004")
474 .metadata("search_optimized", "true")
475 .metadata("indexing", "enhanced")
476 .metadata("caching", "enabled");
477
478 println!("๐ Created advanced search store:");
479 println!(" Optimization: Enhanced indexing");
480 println!(" Caching: Enabled");
481 println!(" Files: {} documents", optimized_store.file_count());
482
483 // Demonstrate advanced search patterns
484 println!("\n๐ง Advanced Search Patterns:");
485
486 // Multi-stage search
487 println!(" 1. ๐ฏ Multi-stage Search:");
488 println!(" Stage 1: Broad semantic search (100 results)");
489 println!(" Stage 2: Filtered refinement (20 results)");
490 println!(" Stage 3: Relevance re-ranking (5 top results)");
491
492 let multi_stage_search =
493 VectorStoreSearchBuilder::new("advanced-store-789", "machine learning best practices")
494 .limit(100)
495 .filter("category", "best_practices")
496 .filter("verified", "true");
497
498 println!(" Query: '{}'", multi_stage_search.query());
499 println!(
500 " Initial limit: {}",
501 multi_stage_search.limit_ref().unwrap()
502 );
503
504 // Contextual search
505 println!(" 2. ๐ญ Contextual Search:");
506 println!(" Context: User role, project phase, domain expertise");
507 println!(" Adaptation: Results tailored to user context");
508
509 let _contextual_search =
510 search_vector_store_with_limit("advanced-store-789", "deployment strategies", 15)
511 .filter("audience", "senior_engineer")
512 .filter("complexity", "advanced")
513 .filter("domain", "cloud_infrastructure");
514
515 println!(" Audience: senior_engineer");
516 println!(" Complexity: advanced");
517 println!(" Domain: cloud_infrastructure");
518
519 // Hybrid search approaches
520 println!(" 3. ๐ Hybrid Search Approaches:");
521 println!(" Semantic similarity + keyword matching");
522 println!(" Vector search + traditional full-text search");
523 println!(" AI-enhanced query understanding");
524
525 // Search performance optimization
526 println!("\nโก Search Performance Optimization:");
527 println!(" ๐ฏ Query optimization and caching");
528 println!(" ๐ Result pre-computation for common queries");
529 println!(" ๐ Incremental index updates");
530 println!(" ๐ Load balancing across vector stores");
531 println!(" ๐ง Machine learning-based relevance tuning");
532
533 // Quality metrics and monitoring
534 println!("\n๐ Search Quality Metrics:");
535 println!(" ๐ฏ Relevance scores and user feedback");
536 println!(" โฑ๏ธ Query response time analysis");
537 println!(" ๐ Search success rate tracking");
538 println!(" ๐ Usage pattern analysis");
539 println!(" ๐ ๏ธ Continuous improvement recommendations");
540
541 Ok(())
542}Sourcepub fn limit(self, limit: i32) -> Self
pub fn limit(self, limit: i32) -> Self
Set the maximum number of results to return.
Examples found in repository?
examples/vector_stores.rs (line 494)
463fn run_advanced_search_patterns_example() -> Result<(), Error> {
464 println!("\n๐ Example 6: Advanced Search Patterns and Optimization");
465 println!("{}", "=".repeat(60));
466
467 // Create optimized search store
468 let optimized_store = VectorStoreBuilder::new()
469 .name("Advanced Search Optimization Store")
470 .add_file("file-technical-docs-001")
471 .add_file("file-user-feedback-002")
472 .add_file("file-performance-data-003")
473 .add_file("file-best-practices-004")
474 .metadata("search_optimized", "true")
475 .metadata("indexing", "enhanced")
476 .metadata("caching", "enabled");
477
478 println!("๐ Created advanced search store:");
479 println!(" Optimization: Enhanced indexing");
480 println!(" Caching: Enabled");
481 println!(" Files: {} documents", optimized_store.file_count());
482
483 // Demonstrate advanced search patterns
484 println!("\n๐ง Advanced Search Patterns:");
485
486 // Multi-stage search
487 println!(" 1. ๐ฏ Multi-stage Search:");
488 println!(" Stage 1: Broad semantic search (100 results)");
489 println!(" Stage 2: Filtered refinement (20 results)");
490 println!(" Stage 3: Relevance re-ranking (5 top results)");
491
492 let multi_stage_search =
493 VectorStoreSearchBuilder::new("advanced-store-789", "machine learning best practices")
494 .limit(100)
495 .filter("category", "best_practices")
496 .filter("verified", "true");
497
498 println!(" Query: '{}'", multi_stage_search.query());
499 println!(
500 " Initial limit: {}",
501 multi_stage_search.limit_ref().unwrap()
502 );
503
504 // Contextual search
505 println!(" 2. ๐ญ Contextual Search:");
506 println!(" Context: User role, project phase, domain expertise");
507 println!(" Adaptation: Results tailored to user context");
508
509 let _contextual_search =
510 search_vector_store_with_limit("advanced-store-789", "deployment strategies", 15)
511 .filter("audience", "senior_engineer")
512 .filter("complexity", "advanced")
513 .filter("domain", "cloud_infrastructure");
514
515 println!(" Audience: senior_engineer");
516 println!(" Complexity: advanced");
517 println!(" Domain: cloud_infrastructure");
518
519 // Hybrid search approaches
520 println!(" 3. ๐ Hybrid Search Approaches:");
521 println!(" Semantic similarity + keyword matching");
522 println!(" Vector search + traditional full-text search");
523 println!(" AI-enhanced query understanding");
524
525 // Search performance optimization
526 println!("\nโก Search Performance Optimization:");
527 println!(" ๐ฏ Query optimization and caching");
528 println!(" ๐ Result pre-computation for common queries");
529 println!(" ๐ Incremental index updates");
530 println!(" ๐ Load balancing across vector stores");
531 println!(" ๐ง Machine learning-based relevance tuning");
532
533 // Quality metrics and monitoring
534 println!("\n๐ Search Quality Metrics:");
535 println!(" ๐ฏ Relevance scores and user feedback");
536 println!(" โฑ๏ธ Query response time analysis");
537 println!(" ๐ Search success rate tracking");
538 println!(" ๐ Usage pattern analysis");
539 println!(" ๐ ๏ธ Continuous improvement recommendations");
540
541 Ok(())
542}Sourcepub fn filter(self, key: impl Into<String>, value: impl Into<String>) -> Self
pub fn filter(self, key: impl Into<String>, value: impl Into<String>) -> Self
Add a filter to the search.
Examples found in repository?
examples/vector_stores.rs (line 268)
224fn run_semantic_search_example() -> Result<(), Error> {
225 println!("\n๐ Example 3: Semantic Search and Similarity Queries");
226 println!("{}", "=".repeat(60));
227
228 // Create a search-optimized vector store
229 let search_store = simple_vector_store("Semantic Search Demo Store")
230 .add_file("file-ml-concepts-001")
231 .add_file("file-nlp-techniques-002")
232 .add_file("file-deep-learning-003")
233 .add_file("file-computer-vision-004")
234 .add_file("file-ai-ethics-005")
235 .metadata("domain", "machine_learning")
236 .metadata("search_optimized", "true");
237
238 println!("๐ Created search-optimized vector store:");
239 println!(" Name: {}", search_store.name_ref().unwrap());
240 println!(" Domain: Machine Learning");
241 println!(" Documents: {} files", search_store.file_count());
242
243 // Demonstrate various search patterns
244 println!("\n๐ฏ Search Query Examples:");
245
246 // Basic semantic search
247 let basic_search = search_vector_store("search-store-123", "neural network architectures");
248 println!(" 1. Basic Search:");
249 println!(" Query: '{}'", basic_search.query());
250 println!(" Store: {}", basic_search.vector_store_id());
251
252 // Limited result search
253 let limited_search = search_vector_store_with_limit(
254 "search-store-123",
255 "natural language processing techniques",
256 5,
257 );
258 println!(" 2. Limited Results:");
259 println!(" Query: '{}'", limited_search.query());
260 println!(
261 " Limit: {} results",
262 limited_search.limit_ref().unwrap()
263 );
264
265 // Advanced filtered search
266 let filtered_search =
267 search_vector_store_with_limit("search-store-123", "computer vision applications", 10)
268 .filter("category", "practical_applications")
269 .filter("difficulty", "intermediate");
270
271 println!(" 3. Filtered Search:");
272 println!(" Query: '{}'", filtered_search.query());
273 println!(
274 " Filters: {} applied",
275 filtered_search.filter_ref().len()
276 );
277 for (key, value) in filtered_search.filter_ref() {
278 println!(" {}={}", key, value);
279 }
280
281 // Demonstrate search result processing
282 println!("\n๐ Search Result Processing:");
283 println!(" ๐ฏ Semantic similarity ranking");
284 println!(" ๐ Document excerpt extraction");
285 println!(" ๐ข Relevance score calculation");
286 println!(" ๐ Source location identification");
287 println!(" ๐ Related content suggestions");
288
289 // Show different query types
290 println!("\n๐ง Query Type Examples:");
291 let query_examples = vec![
292 (
293 "Conceptual",
294 "What is machine learning?",
295 "Broad conceptual understanding",
296 ),
297 (
298 "Technical",
299 "How to implement backpropagation?",
300 "Specific technical implementation",
301 ),
302 (
303 "Comparative",
304 "LSTM vs Transformer architectures",
305 "Comparative analysis",
306 ),
307 (
308 "Problem-solving",
309 "Overfitting in neural networks",
310 "Problem identification and solutions",
311 ),
312 (
313 "Application",
314 "Computer vision in healthcare",
315 "Domain-specific applications",
316 ),
317 ];
318
319 for (query_type, query, description) in query_examples {
320 println!(" ๐ฏ {}: '{}'", query_type, query);
321 println!(" Purpose: {}", description);
322 }
323
324 Ok(())
325}
326
327/// Example 4: Enterprise Knowledge Base
328fn run_enterprise_knowledge_base_example() -> Result<(), Error> {
329 println!("\n๐ข Example 4: Enterprise Knowledge Base");
330 println!("{}", "=".repeat(60));
331
332 // Create enterprise-scale vector stores
333 let enterprise_stores = create_enterprise_knowledge_base()?;
334
335 println!("๐ข Enterprise Knowledge Base Architecture:");
336 for (department, store) in enterprise_stores {
337 println!(" ๐ {}", department);
338 println!(" Files: {} documents", store.file_count());
339 println!(
340 " Retention: {} days",
341 store
342 .expires_after_ref()
343 .map_or("permanent".to_string(), |exp| exp.days.to_string())
344 .as_str()
345 );
346
347 // Show metadata structure
348 for (key, value) in store.metadata_ref() {
349 println!(" {}: {}", key, value);
350 }
351 println!();
352 }
353
354 // Demonstrate cross-departmental search
355 println!("๐ Cross-Departmental Search Examples:");
356
357 let cross_searches = vec![
358 (
359 "Security Compliance",
360 "GDPR data handling procedures",
361 vec!["legal", "engineering", "hr"],
362 ),
363 (
364 "Product Launch",
365 "Q4 release planning and coordination",
366 vec!["product", "engineering", "marketing"],
367 ),
368 (
369 "Budget Planning",
370 "Annual technology investment strategy",
371 vec!["finance", "engineering", "executive"],
372 ),
373 (
374 "Process Improvement",
375 "Remote work productivity guidelines",
376 vec!["hr", "operations", "it"],
377 ),
378 ];
379
380 for (topic, query, departments) in cross_searches {
381 println!(" ๐ {}: '{}'", topic, query);
382 println!(" Search scope: {}", departments.join(", "));
383 }
384
385 println!("\n๐ก๏ธ Enterprise Features:");
386 println!(" ๐ Role-based access control");
387 println!(" ๐ Usage analytics and monitoring");
388 println!(" ๐ Automated content lifecycle management");
389 println!(" ๐ Search performance optimization");
390 println!(" ๐พ Backup and disaster recovery");
391 println!(" ๐ท๏ธ Compliance and audit trails");
392
393 Ok(())
394}
395
396/// Example 5: Vector Store Lifecycle Management
397fn run_vector_store_lifecycle_example() -> Result<(), Error> {
398 println!("\nโป๏ธ Example 5: Vector Store Lifecycle Management");
399 println!("{}", "=".repeat(60));
400
401 // Demonstrate different lifecycle patterns
402 println!("โฐ Vector Store Lifecycle Patterns:");
403
404 // Temporary stores for sessions
405 let session_store = temporary_vector_store("User Session Store", 1)
406 .add_file("file-session-context-001")
407 .metadata("session_id", "sess_12345")
408 .metadata("user_id", "user_67890");
409
410 println!(" ๐ Session-based (1 day):");
411 println!(" Purpose: Temporary user context");
412 println!(" Files: {}", session_store.file_count());
413 println!(" Auto-cleanup: โ
");
414
415 // Project stores
416 let project_store = temporary_vector_store("Project Alpha Documentation", 90)
417 .add_file("file-project-spec-001")
418 .add_file("file-meeting-notes-002")
419 .add_file("file-progress-reports-003")
420 .metadata("project_id", "proj_alpha_2024")
421 .metadata("phase", "development");
422
423 println!(" ๐
Project-based (90 days):");
424 println!(" Purpose: Project lifecycle documentation");
425 println!(" Files: {}", project_store.file_count());
426 println!(" Cleanup: After project completion");
427
428 // Long-term knowledge stores
429 let knowledge_store = simple_vector_store("Institutional Knowledge Base")
430 .add_file("file-company-history-001")
431 .add_file("file-best-practices-002")
432 .add_file("file-lessons-learned-003")
433 .metadata("retention", "permanent")
434 .metadata("backup", "enabled")
435 .metadata("compliance", "required");
436
437 println!(" ๐๏ธ Institutional (permanent):");
438 println!(" Purpose: Long-term organizational knowledge");
439 println!(" Files: {}", knowledge_store.file_count());
440 println!(" Cleanup: Manual review only");
441
442 // Demonstrate lifecycle events
443 println!("\n๐ Lifecycle Event Handling:");
444 println!(" ๐ฅ Creation: Automatic indexing and optimization");
445 println!(" ๐ Updates: Incremental re-indexing of modified files");
446 println!(" ๐ Monitoring: Usage tracking and performance metrics");
447 println!(" โ ๏ธ Warnings: Expiration notifications and alerts");
448 println!(" ๐๏ธ Cleanup: Automatic or manual deletion processes");
449 println!(" ๐พ Archival: Long-term storage for compliance");
450
451 // Show cost optimization strategies
452 println!("\n๐ฐ Cost Optimization Strategies:");
453 println!(" ๐ฏ Smart expiration policies based on usage");
454 println!(" ๐ Analytics-driven storage optimization");
455 println!(" ๐๏ธ Automatic compression for archived content");
456 println!(" ๐ Tiered storage (hot, warm, cold)");
457 println!(" ๐ Usage-based scaling recommendations");
458
459 Ok(())
460}
461
462/// Example 6: Advanced Search Patterns and Optimization
463fn run_advanced_search_patterns_example() -> Result<(), Error> {
464 println!("\n๐ Example 6: Advanced Search Patterns and Optimization");
465 println!("{}", "=".repeat(60));
466
467 // Create optimized search store
468 let optimized_store = VectorStoreBuilder::new()
469 .name("Advanced Search Optimization Store")
470 .add_file("file-technical-docs-001")
471 .add_file("file-user-feedback-002")
472 .add_file("file-performance-data-003")
473 .add_file("file-best-practices-004")
474 .metadata("search_optimized", "true")
475 .metadata("indexing", "enhanced")
476 .metadata("caching", "enabled");
477
478 println!("๐ Created advanced search store:");
479 println!(" Optimization: Enhanced indexing");
480 println!(" Caching: Enabled");
481 println!(" Files: {} documents", optimized_store.file_count());
482
483 // Demonstrate advanced search patterns
484 println!("\n๐ง Advanced Search Patterns:");
485
486 // Multi-stage search
487 println!(" 1. ๐ฏ Multi-stage Search:");
488 println!(" Stage 1: Broad semantic search (100 results)");
489 println!(" Stage 2: Filtered refinement (20 results)");
490 println!(" Stage 3: Relevance re-ranking (5 top results)");
491
492 let multi_stage_search =
493 VectorStoreSearchBuilder::new("advanced-store-789", "machine learning best practices")
494 .limit(100)
495 .filter("category", "best_practices")
496 .filter("verified", "true");
497
498 println!(" Query: '{}'", multi_stage_search.query());
499 println!(
500 " Initial limit: {}",
501 multi_stage_search.limit_ref().unwrap()
502 );
503
504 // Contextual search
505 println!(" 2. ๐ญ Contextual Search:");
506 println!(" Context: User role, project phase, domain expertise");
507 println!(" Adaptation: Results tailored to user context");
508
509 let _contextual_search =
510 search_vector_store_with_limit("advanced-store-789", "deployment strategies", 15)
511 .filter("audience", "senior_engineer")
512 .filter("complexity", "advanced")
513 .filter("domain", "cloud_infrastructure");
514
515 println!(" Audience: senior_engineer");
516 println!(" Complexity: advanced");
517 println!(" Domain: cloud_infrastructure");
518
519 // Hybrid search approaches
520 println!(" 3. ๐ Hybrid Search Approaches:");
521 println!(" Semantic similarity + keyword matching");
522 println!(" Vector search + traditional full-text search");
523 println!(" AI-enhanced query understanding");
524
525 // Search performance optimization
526 println!("\nโก Search Performance Optimization:");
527 println!(" ๐ฏ Query optimization and caching");
528 println!(" ๐ Result pre-computation for common queries");
529 println!(" ๐ Incremental index updates");
530 println!(" ๐ Load balancing across vector stores");
531 println!(" ๐ง Machine learning-based relevance tuning");
532
533 // Quality metrics and monitoring
534 println!("\n๐ Search Quality Metrics:");
535 println!(" ๐ฏ Relevance scores and user feedback");
536 println!(" โฑ๏ธ Query response time analysis");
537 println!(" ๐ Search success rate tracking");
538 println!(" ๐ Usage pattern analysis");
539 println!(" ๐ ๏ธ Continuous improvement recommendations");
540
541 Ok(())
542}More examples
examples/assistants_file_search.rs (line 256)
206fn run_research_assistant_example() -> Result<(), Error> {
207 println!("\n๐ฌ Example 3: Research Assistant with Advanced RAG");
208 println!("{}", "=".repeat(60));
209
210 // Create research-focused assistant
211 let _research_assistant = assistant_with_instructions(
212 "gpt-4-1106-preview",
213 "Research Assistant",
214 "You are a research assistant specializing in literature review and analysis. Help researchers find relevant information, identify patterns across documents, synthesize findings, and suggest research directions. Always provide comprehensive citations and acknowledge research limitations."
215 )
216 .add_tool(tool_file_search());
217
218 println!("๐ฌ Created research assistant:");
219 println!(" Focus: Literature review and cross-document analysis");
220
221 // Create a comprehensive research vector store
222 let _research_store = VectorStoreBuilder::new()
223 .name("Research Literature Database")
224 .add_file("file-paper-ai-ethics-001")
225 .add_file("file-paper-ml-bias-002")
226 .add_file("file-paper-fairness-003")
227 .add_file("file-survey-responsible-ai-004")
228 .add_file("file-whitepaper-governance-005")
229 .metadata("domain", "AI Ethics")
230 .metadata("papers_count", "50")
231 .metadata("date_range", "2020-2024");
232
233 println!("\n๐ Research Literature Database:");
234 println!(" Domain: AI Ethics and Responsible AI");
235 println!(" Papers: 5 documents loaded (representing 50 papers)");
236 println!(" Date range: 2020-2024");
237
238 println!("\n๐ญ Research Query:");
239 println!(
240 " 'What are the current approaches to addressing algorithmic bias in machine learning?'"
241 );
242 println!(" 'Please provide a comprehensive overview with citations.'");
243
244 println!("\n๐ Advanced RAG Research Workflow:");
245 println!(" 1. ๐ฏ Query analysis and decomposition");
246 println!(" 2. ๐ Multi-faceted search across all documents");
247 println!(" 3. ๐ Semantic clustering of results");
248 println!(" 4. ๐ Cross-reference analysis between papers");
249 println!(" 5. ๐ Identify trends and patterns");
250 println!(" 6. ๐ง Synthesize comprehensive overview");
251 println!(" 7. ๐ Provide detailed citations and references");
252
253 // Demonstrate search refinement
254 let refined_search =
255 search_vector_store_with_limit("research-db-123", "algorithmic bias mitigation", 20)
256 .filter("category", "methodology")
257 .filter("confidence", "high");
258
259 println!("\n๐ฏ Search Refinement:");
260 println!(" Query: algorithmic bias mitigation");
261 println!(" Limit: {} results", refined_search.limit_ref().unwrap());
262 println!(" Filters: category=methodology, confidence=high");
263
264 println!("\nโจ Expected Research Response:");
265 println!(" ๐ Executive Summary:");
266 println!(" โข Overview of current bias mitigation approaches");
267 println!(" โข Key methodological categories identified");
268 println!(" โข Emerging trends and best practices");
269 println!(" ");
270 println!(" ๐ Detailed Analysis:");
271 println!(" โข Pre-processing techniques (data augmentation, sampling)");
272 println!(" โข In-processing methods (fairness constraints, adversarial training)");
273 println!(" โข Post-processing approaches (threshold optimization, calibration)");
274 println!(" ");
275 println!(" ๐ Comprehensive Citations:");
276 println!(" โข [Smith et al., 2023] - Fairness constraints in ML training");
277 println!(" โข [Johnson & Lee, 2024] - Bias detection in neural networks");
278 println!(" โข [Research Survey, 2024] - Comprehensive bias mitigation review");
279 println!(" ");
280 println!(" ๐ฎ Future Research Directions:");
281 println!(" โข Intersectional bias analysis");
282 println!(" โข Real-time bias monitoring");
283 println!(" โข Domain-specific mitigation strategies");
284
285 Ok(())
286}
287
288/// Example 4: Citation and Source Attribution
289fn run_citation_example() -> Result<(), Error> {
290 println!("\n๐ Example 4: Citation and Source Attribution");
291 println!("{}", "=".repeat(60));
292
293 // Create citation-focused assistant
294 let _citation_assistant = AssistantBuilder::new("gpt-4-1106-preview")
295 .name("Citation Specialist")
296 .description("Provides detailed source attribution and citation management")
297 .instructions(
298 "You are a citation specialist. Always provide accurate, detailed citations for any information retrieved from documents. Use proper academic citation formats, include page numbers when available, and distinguish between direct quotes and paraphrased content."
299 )
300 .add_tool(tool_file_search());
301
302 println!("๐ Created citation specialist assistant:");
303 println!(" Focus: Accurate source attribution and citation formatting");
304
305 // Create thread for citation-heavy work
306 let _citation_thread = simple_thread()
307 .metadata("citation_style", "APA")
308 .metadata("requirement", "academic_standards")
309 .metadata("verification", "enabled");
310
311 println!("\n๐ Citation Requirements:");
312 println!(" Style: APA format");
313 println!(" Standards: Academic-level accuracy");
314 println!(" Verification: Enabled for all sources");
315
316 println!("\n๐ญ Citation Query:");
317 println!(" 'Provide a summary of the key arguments about privacy in AI systems,'");
318 println!(" 'with detailed citations for each point made.'");
319
320 println!("\n๐ Citation-Focused RAG Workflow:");
321 println!(" 1. ๐ Search for relevant content across documents");
322 println!(" 2. ๐ Extract content with precise location data");
323 println!(" 3. ๐ง Generate response with inline citations");
324 println!(" 4. โ
Verify citation accuracy and completeness");
325 println!(" 5. ๐ Format citations according to specified style");
326 println!(" 6. ๐ Cross-check for citation consistency");
327
328 // Demonstrate different citation formats
329 println!("\n๐ Citation Format Examples:");
330 println!(" ๐ฏ Direct Quote:");
331 println!(
332 " \"Privacy-preserving AI requires careful balance between utility and protection\""
333 );
334 println!(" (Johnson, 2024, p. 15)");
335 println!(" ");
336 println!(" ๐ Paraphrased Content:");
337 println!(" Recent research indicates that differential privacy methods show promise");
338 println!(" for protecting individual data in ML training (Smith & Lee, 2023).");
339 println!(" ");
340 println!(" ๐ Multiple Source Synthesis:");
341 println!(" Several studies have demonstrated the effectiveness of federated learning");
342 println!(" approaches (Chen et al., 2023; Rodriguez, 2024; Brown & Wilson, 2023).");
343
344 println!("\nโจ Expected Citation Response:");
345 println!(" ๐ Structured Summary with Citations:");
346 println!(" โข Privacy challenges in AI systems (Anderson, 2024, pp. 23-25)");
347 println!(" โข Technical solutions: differential privacy (Johnson et al., 2023)");
348 println!(" โข Regulatory considerations (Privacy Commission Report, 2024, ยง3.2)");
349 println!(" ");
350 println!(" ๐ Reference List:");
351 println!(
352 " Anderson, M. (2024). AI Privacy Challenges. Tech Ethics Journal, 15(3), 20-30."
353 );
354 println!(" Johnson, P., Smith, R., & Lee, K. (2023). Differential privacy in practice.");
355 println!(" Privacy Commission. (2024). AI governance guidelines (Report #2024-AI-001).");
356
357 Ok(())
358}
359
360/// Example 5: Multi-Document Analysis and Synthesis
361fn run_multi_document_analysis_example() -> Result<(), Error> {
362 println!("\n๐ Example 5: Multi-Document Analysis and Synthesis");
363 println!("{}", "=".repeat(60));
364
365 // Create multi-document analysis assistant
366 let _analysis_assistant = assistant_with_instructions(
367 "gpt-4-1106-preview",
368 "Document Analysis Specialist",
369 "You are a document analysis expert. Compare and contrast information across multiple documents, identify contradictions or gaps, synthesize information from diverse sources, and provide comprehensive analysis that considers multiple perspectives."
370 )
371 .add_tool(tool_file_search());
372
373 println!("๐ Created document analysis assistant:");
374 println!(" Specialty: Cross-document comparison and synthesis");
375
376 // Create comprehensive document store for analysis
377 let _analysis_store = VectorStoreBuilder::new()
378 .name("Multi-Document Analysis Store")
379 .add_file("file-policy-proposal-v1")
380 .add_file("file-policy-proposal-v2")
381 .add_file("file-stakeholder-feedback-001")
382 .add_file("file-legal-review-002")
383 .add_file("file-technical-assessment-003")
384 .add_file("file-cost-benefit-analysis-004")
385 .metadata("analysis_type", "policy_comparison")
386 .metadata("documents", "6")
387 .metadata("perspectives", "multiple");
388
389 println!("\n๐ Multi-Document Analysis Setup:");
390 println!(" Documents: 6 files representing different perspectives");
391 println!(" Analysis type: Policy proposal comparison");
392 println!(" Perspectives: Technical, legal, financial, stakeholder");
393
394 println!("\n๐ญ Multi-Document Analysis Query:");
395 println!(" 'Compare the two policy proposals and analyze how stakeholder feedback'");
396 println!(" 'has been incorporated. Identify any conflicts between the legal review'");
397 println!(" 'and technical assessment.'");
398
399 println!("\n๐ Multi-Document RAG Analysis Workflow:");
400 println!(" 1. ๐ฏ Identify key comparison dimensions");
401 println!(" 2. ๐ Search each document type systematically");
402 println!(" 3. ๐ Create comparison matrix across documents");
403 println!(" 4. โ๏ธ Identify conflicts and contradictions");
404 println!(" 5. ๐ Find connections and dependencies");
405 println!(" 6. ๐ง Synthesize comprehensive analysis");
406 println!(" 7. ๐ Provide recommendations based on synthesis");
407
408 // Demonstrate advanced search patterns
409 let _comparative_search =
410 search_vector_store_with_limit("analysis-store-456", "risk assessment comparison", 15)
411 .filter("document_type", "technical,legal")
412 .filter("section", "risks");
413
414 println!("\n๐ Advanced Search Pattern:");
415 println!(" Query: risk assessment comparison");
416 println!(" Target documents: technical + legal reviews");
417 println!(" Focus section: risk analysis sections");
418
419 println!("\nโจ Expected Multi-Document Analysis:");
420 println!(" ๐ Comparative Analysis:");
421 println!(" Policy Proposal Comparison:");
422 println!(" โข V1 focuses on immediate implementation (Technical Assessment)");
423 println!(" โข V2 incorporates phased approach (Stakeholder Feedback)");
424 println!(" ");
425 println!(" โ๏ธ Identified Conflicts:");
426 println!(" โข Legal review flags compliance issues with V1 approach");
427 println!(" โข Technical assessment questions feasibility of V2 timeline");
428 println!(" โข Cost analysis shows budget misalignment between proposals");
429 println!(" ");
430 println!(" ๐ Stakeholder Integration:");
431 println!(" โข 73% of feedback incorporated in V2 (Stakeholder Feedback doc)");
432 println!(" โข Privacy concerns addressed through technical modifications");
433 println!(" โข Cost concerns partially resolved via phased implementation");
434 println!(" ");
435 println!(" ๐ก Synthesis Recommendations:");
436 println!(" โข Hybrid approach combining V1 technical framework with V2 timeline");
437 println!(" โข Address legal compliance through additional technical review");
438 println!(" โข Require budget revision to align with stakeholder expectations");
439
440 Ok(())
441}Sourcepub fn vector_store_id(&self) -> &str
pub fn vector_store_id(&self) -> &str
Get the vector store ID for this search.
Examples found in repository?
examples/vector_stores.rs (line 250)
224fn run_semantic_search_example() -> Result<(), Error> {
225 println!("\n๐ Example 3: Semantic Search and Similarity Queries");
226 println!("{}", "=".repeat(60));
227
228 // Create a search-optimized vector store
229 let search_store = simple_vector_store("Semantic Search Demo Store")
230 .add_file("file-ml-concepts-001")
231 .add_file("file-nlp-techniques-002")
232 .add_file("file-deep-learning-003")
233 .add_file("file-computer-vision-004")
234 .add_file("file-ai-ethics-005")
235 .metadata("domain", "machine_learning")
236 .metadata("search_optimized", "true");
237
238 println!("๐ Created search-optimized vector store:");
239 println!(" Name: {}", search_store.name_ref().unwrap());
240 println!(" Domain: Machine Learning");
241 println!(" Documents: {} files", search_store.file_count());
242
243 // Demonstrate various search patterns
244 println!("\n๐ฏ Search Query Examples:");
245
246 // Basic semantic search
247 let basic_search = search_vector_store("search-store-123", "neural network architectures");
248 println!(" 1. Basic Search:");
249 println!(" Query: '{}'", basic_search.query());
250 println!(" Store: {}", basic_search.vector_store_id());
251
252 // Limited result search
253 let limited_search = search_vector_store_with_limit(
254 "search-store-123",
255 "natural language processing techniques",
256 5,
257 );
258 println!(" 2. Limited Results:");
259 println!(" Query: '{}'", limited_search.query());
260 println!(
261 " Limit: {} results",
262 limited_search.limit_ref().unwrap()
263 );
264
265 // Advanced filtered search
266 let filtered_search =
267 search_vector_store_with_limit("search-store-123", "computer vision applications", 10)
268 .filter("category", "practical_applications")
269 .filter("difficulty", "intermediate");
270
271 println!(" 3. Filtered Search:");
272 println!(" Query: '{}'", filtered_search.query());
273 println!(
274 " Filters: {} applied",
275 filtered_search.filter_ref().len()
276 );
277 for (key, value) in filtered_search.filter_ref() {
278 println!(" {}={}", key, value);
279 }
280
281 // Demonstrate search result processing
282 println!("\n๐ Search Result Processing:");
283 println!(" ๐ฏ Semantic similarity ranking");
284 println!(" ๐ Document excerpt extraction");
285 println!(" ๐ข Relevance score calculation");
286 println!(" ๐ Source location identification");
287 println!(" ๐ Related content suggestions");
288
289 // Show different query types
290 println!("\n๐ง Query Type Examples:");
291 let query_examples = vec![
292 (
293 "Conceptual",
294 "What is machine learning?",
295 "Broad conceptual understanding",
296 ),
297 (
298 "Technical",
299 "How to implement backpropagation?",
300 "Specific technical implementation",
301 ),
302 (
303 "Comparative",
304 "LSTM vs Transformer architectures",
305 "Comparative analysis",
306 ),
307 (
308 "Problem-solving",
309 "Overfitting in neural networks",
310 "Problem identification and solutions",
311 ),
312 (
313 "Application",
314 "Computer vision in healthcare",
315 "Domain-specific applications",
316 ),
317 ];
318
319 for (query_type, query, description) in query_examples {
320 println!(" ๐ฏ {}: '{}'", query_type, query);
321 println!(" Purpose: {}", description);
322 }
323
324 Ok(())
325}Sourcepub fn query(&self) -> &str
pub fn query(&self) -> &str
Get the search query.
Examples found in repository?
examples/vector_stores.rs (line 249)
224fn run_semantic_search_example() -> Result<(), Error> {
225 println!("\n๐ Example 3: Semantic Search and Similarity Queries");
226 println!("{}", "=".repeat(60));
227
228 // Create a search-optimized vector store
229 let search_store = simple_vector_store("Semantic Search Demo Store")
230 .add_file("file-ml-concepts-001")
231 .add_file("file-nlp-techniques-002")
232 .add_file("file-deep-learning-003")
233 .add_file("file-computer-vision-004")
234 .add_file("file-ai-ethics-005")
235 .metadata("domain", "machine_learning")
236 .metadata("search_optimized", "true");
237
238 println!("๐ Created search-optimized vector store:");
239 println!(" Name: {}", search_store.name_ref().unwrap());
240 println!(" Domain: Machine Learning");
241 println!(" Documents: {} files", search_store.file_count());
242
243 // Demonstrate various search patterns
244 println!("\n๐ฏ Search Query Examples:");
245
246 // Basic semantic search
247 let basic_search = search_vector_store("search-store-123", "neural network architectures");
248 println!(" 1. Basic Search:");
249 println!(" Query: '{}'", basic_search.query());
250 println!(" Store: {}", basic_search.vector_store_id());
251
252 // Limited result search
253 let limited_search = search_vector_store_with_limit(
254 "search-store-123",
255 "natural language processing techniques",
256 5,
257 );
258 println!(" 2. Limited Results:");
259 println!(" Query: '{}'", limited_search.query());
260 println!(
261 " Limit: {} results",
262 limited_search.limit_ref().unwrap()
263 );
264
265 // Advanced filtered search
266 let filtered_search =
267 search_vector_store_with_limit("search-store-123", "computer vision applications", 10)
268 .filter("category", "practical_applications")
269 .filter("difficulty", "intermediate");
270
271 println!(" 3. Filtered Search:");
272 println!(" Query: '{}'", filtered_search.query());
273 println!(
274 " Filters: {} applied",
275 filtered_search.filter_ref().len()
276 );
277 for (key, value) in filtered_search.filter_ref() {
278 println!(" {}={}", key, value);
279 }
280
281 // Demonstrate search result processing
282 println!("\n๐ Search Result Processing:");
283 println!(" ๐ฏ Semantic similarity ranking");
284 println!(" ๐ Document excerpt extraction");
285 println!(" ๐ข Relevance score calculation");
286 println!(" ๐ Source location identification");
287 println!(" ๐ Related content suggestions");
288
289 // Show different query types
290 println!("\n๐ง Query Type Examples:");
291 let query_examples = vec![
292 (
293 "Conceptual",
294 "What is machine learning?",
295 "Broad conceptual understanding",
296 ),
297 (
298 "Technical",
299 "How to implement backpropagation?",
300 "Specific technical implementation",
301 ),
302 (
303 "Comparative",
304 "LSTM vs Transformer architectures",
305 "Comparative analysis",
306 ),
307 (
308 "Problem-solving",
309 "Overfitting in neural networks",
310 "Problem identification and solutions",
311 ),
312 (
313 "Application",
314 "Computer vision in healthcare",
315 "Domain-specific applications",
316 ),
317 ];
318
319 for (query_type, query, description) in query_examples {
320 println!(" ๐ฏ {}: '{}'", query_type, query);
321 println!(" Purpose: {}", description);
322 }
323
324 Ok(())
325}
326
327/// Example 4: Enterprise Knowledge Base
328fn run_enterprise_knowledge_base_example() -> Result<(), Error> {
329 println!("\n๐ข Example 4: Enterprise Knowledge Base");
330 println!("{}", "=".repeat(60));
331
332 // Create enterprise-scale vector stores
333 let enterprise_stores = create_enterprise_knowledge_base()?;
334
335 println!("๐ข Enterprise Knowledge Base Architecture:");
336 for (department, store) in enterprise_stores {
337 println!(" ๐ {}", department);
338 println!(" Files: {} documents", store.file_count());
339 println!(
340 " Retention: {} days",
341 store
342 .expires_after_ref()
343 .map_or("permanent".to_string(), |exp| exp.days.to_string())
344 .as_str()
345 );
346
347 // Show metadata structure
348 for (key, value) in store.metadata_ref() {
349 println!(" {}: {}", key, value);
350 }
351 println!();
352 }
353
354 // Demonstrate cross-departmental search
355 println!("๐ Cross-Departmental Search Examples:");
356
357 let cross_searches = vec![
358 (
359 "Security Compliance",
360 "GDPR data handling procedures",
361 vec!["legal", "engineering", "hr"],
362 ),
363 (
364 "Product Launch",
365 "Q4 release planning and coordination",
366 vec!["product", "engineering", "marketing"],
367 ),
368 (
369 "Budget Planning",
370 "Annual technology investment strategy",
371 vec!["finance", "engineering", "executive"],
372 ),
373 (
374 "Process Improvement",
375 "Remote work productivity guidelines",
376 vec!["hr", "operations", "it"],
377 ),
378 ];
379
380 for (topic, query, departments) in cross_searches {
381 println!(" ๐ {}: '{}'", topic, query);
382 println!(" Search scope: {}", departments.join(", "));
383 }
384
385 println!("\n๐ก๏ธ Enterprise Features:");
386 println!(" ๐ Role-based access control");
387 println!(" ๐ Usage analytics and monitoring");
388 println!(" ๐ Automated content lifecycle management");
389 println!(" ๐ Search performance optimization");
390 println!(" ๐พ Backup and disaster recovery");
391 println!(" ๐ท๏ธ Compliance and audit trails");
392
393 Ok(())
394}
395
396/// Example 5: Vector Store Lifecycle Management
397fn run_vector_store_lifecycle_example() -> Result<(), Error> {
398 println!("\nโป๏ธ Example 5: Vector Store Lifecycle Management");
399 println!("{}", "=".repeat(60));
400
401 // Demonstrate different lifecycle patterns
402 println!("โฐ Vector Store Lifecycle Patterns:");
403
404 // Temporary stores for sessions
405 let session_store = temporary_vector_store("User Session Store", 1)
406 .add_file("file-session-context-001")
407 .metadata("session_id", "sess_12345")
408 .metadata("user_id", "user_67890");
409
410 println!(" ๐ Session-based (1 day):");
411 println!(" Purpose: Temporary user context");
412 println!(" Files: {}", session_store.file_count());
413 println!(" Auto-cleanup: โ
");
414
415 // Project stores
416 let project_store = temporary_vector_store("Project Alpha Documentation", 90)
417 .add_file("file-project-spec-001")
418 .add_file("file-meeting-notes-002")
419 .add_file("file-progress-reports-003")
420 .metadata("project_id", "proj_alpha_2024")
421 .metadata("phase", "development");
422
423 println!(" ๐
Project-based (90 days):");
424 println!(" Purpose: Project lifecycle documentation");
425 println!(" Files: {}", project_store.file_count());
426 println!(" Cleanup: After project completion");
427
428 // Long-term knowledge stores
429 let knowledge_store = simple_vector_store("Institutional Knowledge Base")
430 .add_file("file-company-history-001")
431 .add_file("file-best-practices-002")
432 .add_file("file-lessons-learned-003")
433 .metadata("retention", "permanent")
434 .metadata("backup", "enabled")
435 .metadata("compliance", "required");
436
437 println!(" ๐๏ธ Institutional (permanent):");
438 println!(" Purpose: Long-term organizational knowledge");
439 println!(" Files: {}", knowledge_store.file_count());
440 println!(" Cleanup: Manual review only");
441
442 // Demonstrate lifecycle events
443 println!("\n๐ Lifecycle Event Handling:");
444 println!(" ๐ฅ Creation: Automatic indexing and optimization");
445 println!(" ๐ Updates: Incremental re-indexing of modified files");
446 println!(" ๐ Monitoring: Usage tracking and performance metrics");
447 println!(" โ ๏ธ Warnings: Expiration notifications and alerts");
448 println!(" ๐๏ธ Cleanup: Automatic or manual deletion processes");
449 println!(" ๐พ Archival: Long-term storage for compliance");
450
451 // Show cost optimization strategies
452 println!("\n๐ฐ Cost Optimization Strategies:");
453 println!(" ๐ฏ Smart expiration policies based on usage");
454 println!(" ๐ Analytics-driven storage optimization");
455 println!(" ๐๏ธ Automatic compression for archived content");
456 println!(" ๐ Tiered storage (hot, warm, cold)");
457 println!(" ๐ Usage-based scaling recommendations");
458
459 Ok(())
460}
461
462/// Example 6: Advanced Search Patterns and Optimization
463fn run_advanced_search_patterns_example() -> Result<(), Error> {
464 println!("\n๐ Example 6: Advanced Search Patterns and Optimization");
465 println!("{}", "=".repeat(60));
466
467 // Create optimized search store
468 let optimized_store = VectorStoreBuilder::new()
469 .name("Advanced Search Optimization Store")
470 .add_file("file-technical-docs-001")
471 .add_file("file-user-feedback-002")
472 .add_file("file-performance-data-003")
473 .add_file("file-best-practices-004")
474 .metadata("search_optimized", "true")
475 .metadata("indexing", "enhanced")
476 .metadata("caching", "enabled");
477
478 println!("๐ Created advanced search store:");
479 println!(" Optimization: Enhanced indexing");
480 println!(" Caching: Enabled");
481 println!(" Files: {} documents", optimized_store.file_count());
482
483 // Demonstrate advanced search patterns
484 println!("\n๐ง Advanced Search Patterns:");
485
486 // Multi-stage search
487 println!(" 1. ๐ฏ Multi-stage Search:");
488 println!(" Stage 1: Broad semantic search (100 results)");
489 println!(" Stage 2: Filtered refinement (20 results)");
490 println!(" Stage 3: Relevance re-ranking (5 top results)");
491
492 let multi_stage_search =
493 VectorStoreSearchBuilder::new("advanced-store-789", "machine learning best practices")
494 .limit(100)
495 .filter("category", "best_practices")
496 .filter("verified", "true");
497
498 println!(" Query: '{}'", multi_stage_search.query());
499 println!(
500 " Initial limit: {}",
501 multi_stage_search.limit_ref().unwrap()
502 );
503
504 // Contextual search
505 println!(" 2. ๐ญ Contextual Search:");
506 println!(" Context: User role, project phase, domain expertise");
507 println!(" Adaptation: Results tailored to user context");
508
509 let _contextual_search =
510 search_vector_store_with_limit("advanced-store-789", "deployment strategies", 15)
511 .filter("audience", "senior_engineer")
512 .filter("complexity", "advanced")
513 .filter("domain", "cloud_infrastructure");
514
515 println!(" Audience: senior_engineer");
516 println!(" Complexity: advanced");
517 println!(" Domain: cloud_infrastructure");
518
519 // Hybrid search approaches
520 println!(" 3. ๐ Hybrid Search Approaches:");
521 println!(" Semantic similarity + keyword matching");
522 println!(" Vector search + traditional full-text search");
523 println!(" AI-enhanced query understanding");
524
525 // Search performance optimization
526 println!("\nโก Search Performance Optimization:");
527 println!(" ๐ฏ Query optimization and caching");
528 println!(" ๐ Result pre-computation for common queries");
529 println!(" ๐ Incremental index updates");
530 println!(" ๐ Load balancing across vector stores");
531 println!(" ๐ง Machine learning-based relevance tuning");
532
533 // Quality metrics and monitoring
534 println!("\n๐ Search Quality Metrics:");
535 println!(" ๐ฏ Relevance scores and user feedback");
536 println!(" โฑ๏ธ Query response time analysis");
537 println!(" ๐ Search success rate tracking");
538 println!(" ๐ Usage pattern analysis");
539 println!(" ๐ ๏ธ Continuous improvement recommendations");
540
541 Ok(())
542}Sourcepub fn limit_ref(&self) -> Option<i32>
pub fn limit_ref(&self) -> Option<i32>
Get the search limit.
Examples found in repository?
examples/vector_stores.rs (line 262)
224fn run_semantic_search_example() -> Result<(), Error> {
225 println!("\n๐ Example 3: Semantic Search and Similarity Queries");
226 println!("{}", "=".repeat(60));
227
228 // Create a search-optimized vector store
229 let search_store = simple_vector_store("Semantic Search Demo Store")
230 .add_file("file-ml-concepts-001")
231 .add_file("file-nlp-techniques-002")
232 .add_file("file-deep-learning-003")
233 .add_file("file-computer-vision-004")
234 .add_file("file-ai-ethics-005")
235 .metadata("domain", "machine_learning")
236 .metadata("search_optimized", "true");
237
238 println!("๐ Created search-optimized vector store:");
239 println!(" Name: {}", search_store.name_ref().unwrap());
240 println!(" Domain: Machine Learning");
241 println!(" Documents: {} files", search_store.file_count());
242
243 // Demonstrate various search patterns
244 println!("\n๐ฏ Search Query Examples:");
245
246 // Basic semantic search
247 let basic_search = search_vector_store("search-store-123", "neural network architectures");
248 println!(" 1. Basic Search:");
249 println!(" Query: '{}'", basic_search.query());
250 println!(" Store: {}", basic_search.vector_store_id());
251
252 // Limited result search
253 let limited_search = search_vector_store_with_limit(
254 "search-store-123",
255 "natural language processing techniques",
256 5,
257 );
258 println!(" 2. Limited Results:");
259 println!(" Query: '{}'", limited_search.query());
260 println!(
261 " Limit: {} results",
262 limited_search.limit_ref().unwrap()
263 );
264
265 // Advanced filtered search
266 let filtered_search =
267 search_vector_store_with_limit("search-store-123", "computer vision applications", 10)
268 .filter("category", "practical_applications")
269 .filter("difficulty", "intermediate");
270
271 println!(" 3. Filtered Search:");
272 println!(" Query: '{}'", filtered_search.query());
273 println!(
274 " Filters: {} applied",
275 filtered_search.filter_ref().len()
276 );
277 for (key, value) in filtered_search.filter_ref() {
278 println!(" {}={}", key, value);
279 }
280
281 // Demonstrate search result processing
282 println!("\n๐ Search Result Processing:");
283 println!(" ๐ฏ Semantic similarity ranking");
284 println!(" ๐ Document excerpt extraction");
285 println!(" ๐ข Relevance score calculation");
286 println!(" ๐ Source location identification");
287 println!(" ๐ Related content suggestions");
288
289 // Show different query types
290 println!("\n๐ง Query Type Examples:");
291 let query_examples = vec![
292 (
293 "Conceptual",
294 "What is machine learning?",
295 "Broad conceptual understanding",
296 ),
297 (
298 "Technical",
299 "How to implement backpropagation?",
300 "Specific technical implementation",
301 ),
302 (
303 "Comparative",
304 "LSTM vs Transformer architectures",
305 "Comparative analysis",
306 ),
307 (
308 "Problem-solving",
309 "Overfitting in neural networks",
310 "Problem identification and solutions",
311 ),
312 (
313 "Application",
314 "Computer vision in healthcare",
315 "Domain-specific applications",
316 ),
317 ];
318
319 for (query_type, query, description) in query_examples {
320 println!(" ๐ฏ {}: '{}'", query_type, query);
321 println!(" Purpose: {}", description);
322 }
323
324 Ok(())
325}
326
327/// Example 4: Enterprise Knowledge Base
328fn run_enterprise_knowledge_base_example() -> Result<(), Error> {
329 println!("\n๐ข Example 4: Enterprise Knowledge Base");
330 println!("{}", "=".repeat(60));
331
332 // Create enterprise-scale vector stores
333 let enterprise_stores = create_enterprise_knowledge_base()?;
334
335 println!("๐ข Enterprise Knowledge Base Architecture:");
336 for (department, store) in enterprise_stores {
337 println!(" ๐ {}", department);
338 println!(" Files: {} documents", store.file_count());
339 println!(
340 " Retention: {} days",
341 store
342 .expires_after_ref()
343 .map_or("permanent".to_string(), |exp| exp.days.to_string())
344 .as_str()
345 );
346
347 // Show metadata structure
348 for (key, value) in store.metadata_ref() {
349 println!(" {}: {}", key, value);
350 }
351 println!();
352 }
353
354 // Demonstrate cross-departmental search
355 println!("๐ Cross-Departmental Search Examples:");
356
357 let cross_searches = vec![
358 (
359 "Security Compliance",
360 "GDPR data handling procedures",
361 vec!["legal", "engineering", "hr"],
362 ),
363 (
364 "Product Launch",
365 "Q4 release planning and coordination",
366 vec!["product", "engineering", "marketing"],
367 ),
368 (
369 "Budget Planning",
370 "Annual technology investment strategy",
371 vec!["finance", "engineering", "executive"],
372 ),
373 (
374 "Process Improvement",
375 "Remote work productivity guidelines",
376 vec!["hr", "operations", "it"],
377 ),
378 ];
379
380 for (topic, query, departments) in cross_searches {
381 println!(" ๐ {}: '{}'", topic, query);
382 println!(" Search scope: {}", departments.join(", "));
383 }
384
385 println!("\n๐ก๏ธ Enterprise Features:");
386 println!(" ๐ Role-based access control");
387 println!(" ๐ Usage analytics and monitoring");
388 println!(" ๐ Automated content lifecycle management");
389 println!(" ๐ Search performance optimization");
390 println!(" ๐พ Backup and disaster recovery");
391 println!(" ๐ท๏ธ Compliance and audit trails");
392
393 Ok(())
394}
395
396/// Example 5: Vector Store Lifecycle Management
397fn run_vector_store_lifecycle_example() -> Result<(), Error> {
398 println!("\nโป๏ธ Example 5: Vector Store Lifecycle Management");
399 println!("{}", "=".repeat(60));
400
401 // Demonstrate different lifecycle patterns
402 println!("โฐ Vector Store Lifecycle Patterns:");
403
404 // Temporary stores for sessions
405 let session_store = temporary_vector_store("User Session Store", 1)
406 .add_file("file-session-context-001")
407 .metadata("session_id", "sess_12345")
408 .metadata("user_id", "user_67890");
409
410 println!(" ๐ Session-based (1 day):");
411 println!(" Purpose: Temporary user context");
412 println!(" Files: {}", session_store.file_count());
413 println!(" Auto-cleanup: โ
");
414
415 // Project stores
416 let project_store = temporary_vector_store("Project Alpha Documentation", 90)
417 .add_file("file-project-spec-001")
418 .add_file("file-meeting-notes-002")
419 .add_file("file-progress-reports-003")
420 .metadata("project_id", "proj_alpha_2024")
421 .metadata("phase", "development");
422
423 println!(" ๐
Project-based (90 days):");
424 println!(" Purpose: Project lifecycle documentation");
425 println!(" Files: {}", project_store.file_count());
426 println!(" Cleanup: After project completion");
427
428 // Long-term knowledge stores
429 let knowledge_store = simple_vector_store("Institutional Knowledge Base")
430 .add_file("file-company-history-001")
431 .add_file("file-best-practices-002")
432 .add_file("file-lessons-learned-003")
433 .metadata("retention", "permanent")
434 .metadata("backup", "enabled")
435 .metadata("compliance", "required");
436
437 println!(" ๐๏ธ Institutional (permanent):");
438 println!(" Purpose: Long-term organizational knowledge");
439 println!(" Files: {}", knowledge_store.file_count());
440 println!(" Cleanup: Manual review only");
441
442 // Demonstrate lifecycle events
443 println!("\n๐ Lifecycle Event Handling:");
444 println!(" ๐ฅ Creation: Automatic indexing and optimization");
445 println!(" ๐ Updates: Incremental re-indexing of modified files");
446 println!(" ๐ Monitoring: Usage tracking and performance metrics");
447 println!(" โ ๏ธ Warnings: Expiration notifications and alerts");
448 println!(" ๐๏ธ Cleanup: Automatic or manual deletion processes");
449 println!(" ๐พ Archival: Long-term storage for compliance");
450
451 // Show cost optimization strategies
452 println!("\n๐ฐ Cost Optimization Strategies:");
453 println!(" ๐ฏ Smart expiration policies based on usage");
454 println!(" ๐ Analytics-driven storage optimization");
455 println!(" ๐๏ธ Automatic compression for archived content");
456 println!(" ๐ Tiered storage (hot, warm, cold)");
457 println!(" ๐ Usage-based scaling recommendations");
458
459 Ok(())
460}
461
462/// Example 6: Advanced Search Patterns and Optimization
463fn run_advanced_search_patterns_example() -> Result<(), Error> {
464 println!("\n๐ Example 6: Advanced Search Patterns and Optimization");
465 println!("{}", "=".repeat(60));
466
467 // Create optimized search store
468 let optimized_store = VectorStoreBuilder::new()
469 .name("Advanced Search Optimization Store")
470 .add_file("file-technical-docs-001")
471 .add_file("file-user-feedback-002")
472 .add_file("file-performance-data-003")
473 .add_file("file-best-practices-004")
474 .metadata("search_optimized", "true")
475 .metadata("indexing", "enhanced")
476 .metadata("caching", "enabled");
477
478 println!("๐ Created advanced search store:");
479 println!(" Optimization: Enhanced indexing");
480 println!(" Caching: Enabled");
481 println!(" Files: {} documents", optimized_store.file_count());
482
483 // Demonstrate advanced search patterns
484 println!("\n๐ง Advanced Search Patterns:");
485
486 // Multi-stage search
487 println!(" 1. ๐ฏ Multi-stage Search:");
488 println!(" Stage 1: Broad semantic search (100 results)");
489 println!(" Stage 2: Filtered refinement (20 results)");
490 println!(" Stage 3: Relevance re-ranking (5 top results)");
491
492 let multi_stage_search =
493 VectorStoreSearchBuilder::new("advanced-store-789", "machine learning best practices")
494 .limit(100)
495 .filter("category", "best_practices")
496 .filter("verified", "true");
497
498 println!(" Query: '{}'", multi_stage_search.query());
499 println!(
500 " Initial limit: {}",
501 multi_stage_search.limit_ref().unwrap()
502 );
503
504 // Contextual search
505 println!(" 2. ๐ญ Contextual Search:");
506 println!(" Context: User role, project phase, domain expertise");
507 println!(" Adaptation: Results tailored to user context");
508
509 let _contextual_search =
510 search_vector_store_with_limit("advanced-store-789", "deployment strategies", 15)
511 .filter("audience", "senior_engineer")
512 .filter("complexity", "advanced")
513 .filter("domain", "cloud_infrastructure");
514
515 println!(" Audience: senior_engineer");
516 println!(" Complexity: advanced");
517 println!(" Domain: cloud_infrastructure");
518
519 // Hybrid search approaches
520 println!(" 3. ๐ Hybrid Search Approaches:");
521 println!(" Semantic similarity + keyword matching");
522 println!(" Vector search + traditional full-text search");
523 println!(" AI-enhanced query understanding");
524
525 // Search performance optimization
526 println!("\nโก Search Performance Optimization:");
527 println!(" ๐ฏ Query optimization and caching");
528 println!(" ๐ Result pre-computation for common queries");
529 println!(" ๐ Incremental index updates");
530 println!(" ๐ Load balancing across vector stores");
531 println!(" ๐ง Machine learning-based relevance tuning");
532
533 // Quality metrics and monitoring
534 println!("\n๐ Search Quality Metrics:");
535 println!(" ๐ฏ Relevance scores and user feedback");
536 println!(" โฑ๏ธ Query response time analysis");
537 println!(" ๐ Search success rate tracking");
538 println!(" ๐ Usage pattern analysis");
539 println!(" ๐ ๏ธ Continuous improvement recommendations");
540
541 Ok(())
542}More examples
examples/assistants_file_search.rs (line 261)
206fn run_research_assistant_example() -> Result<(), Error> {
207 println!("\n๐ฌ Example 3: Research Assistant with Advanced RAG");
208 println!("{}", "=".repeat(60));
209
210 // Create research-focused assistant
211 let _research_assistant = assistant_with_instructions(
212 "gpt-4-1106-preview",
213 "Research Assistant",
214 "You are a research assistant specializing in literature review and analysis. Help researchers find relevant information, identify patterns across documents, synthesize findings, and suggest research directions. Always provide comprehensive citations and acknowledge research limitations."
215 )
216 .add_tool(tool_file_search());
217
218 println!("๐ฌ Created research assistant:");
219 println!(" Focus: Literature review and cross-document analysis");
220
221 // Create a comprehensive research vector store
222 let _research_store = VectorStoreBuilder::new()
223 .name("Research Literature Database")
224 .add_file("file-paper-ai-ethics-001")
225 .add_file("file-paper-ml-bias-002")
226 .add_file("file-paper-fairness-003")
227 .add_file("file-survey-responsible-ai-004")
228 .add_file("file-whitepaper-governance-005")
229 .metadata("domain", "AI Ethics")
230 .metadata("papers_count", "50")
231 .metadata("date_range", "2020-2024");
232
233 println!("\n๐ Research Literature Database:");
234 println!(" Domain: AI Ethics and Responsible AI");
235 println!(" Papers: 5 documents loaded (representing 50 papers)");
236 println!(" Date range: 2020-2024");
237
238 println!("\n๐ญ Research Query:");
239 println!(
240 " 'What are the current approaches to addressing algorithmic bias in machine learning?'"
241 );
242 println!(" 'Please provide a comprehensive overview with citations.'");
243
244 println!("\n๐ Advanced RAG Research Workflow:");
245 println!(" 1. ๐ฏ Query analysis and decomposition");
246 println!(" 2. ๐ Multi-faceted search across all documents");
247 println!(" 3. ๐ Semantic clustering of results");
248 println!(" 4. ๐ Cross-reference analysis between papers");
249 println!(" 5. ๐ Identify trends and patterns");
250 println!(" 6. ๐ง Synthesize comprehensive overview");
251 println!(" 7. ๐ Provide detailed citations and references");
252
253 // Demonstrate search refinement
254 let refined_search =
255 search_vector_store_with_limit("research-db-123", "algorithmic bias mitigation", 20)
256 .filter("category", "methodology")
257 .filter("confidence", "high");
258
259 println!("\n๐ฏ Search Refinement:");
260 println!(" Query: algorithmic bias mitigation");
261 println!(" Limit: {} results", refined_search.limit_ref().unwrap());
262 println!(" Filters: category=methodology, confidence=high");
263
264 println!("\nโจ Expected Research Response:");
265 println!(" ๐ Executive Summary:");
266 println!(" โข Overview of current bias mitigation approaches");
267 println!(" โข Key methodological categories identified");
268 println!(" โข Emerging trends and best practices");
269 println!(" ");
270 println!(" ๐ Detailed Analysis:");
271 println!(" โข Pre-processing techniques (data augmentation, sampling)");
272 println!(" โข In-processing methods (fairness constraints, adversarial training)");
273 println!(" โข Post-processing approaches (threshold optimization, calibration)");
274 println!(" ");
275 println!(" ๐ Comprehensive Citations:");
276 println!(" โข [Smith et al., 2023] - Fairness constraints in ML training");
277 println!(" โข [Johnson & Lee, 2024] - Bias detection in neural networks");
278 println!(" โข [Research Survey, 2024] - Comprehensive bias mitigation review");
279 println!(" ");
280 println!(" ๐ฎ Future Research Directions:");
281 println!(" โข Intersectional bias analysis");
282 println!(" โข Real-time bias monitoring");
283 println!(" โข Domain-specific mitigation strategies");
284
285 Ok(())
286}Sourcepub fn filter_ref(&self) -> &HashMap<String, String>
pub fn filter_ref(&self) -> &HashMap<String, String>
Get the search filters.
Examples found in repository?
examples/vector_stores.rs (line 275)
224fn run_semantic_search_example() -> Result<(), Error> {
225 println!("\n๐ Example 3: Semantic Search and Similarity Queries");
226 println!("{}", "=".repeat(60));
227
228 // Create a search-optimized vector store
229 let search_store = simple_vector_store("Semantic Search Demo Store")
230 .add_file("file-ml-concepts-001")
231 .add_file("file-nlp-techniques-002")
232 .add_file("file-deep-learning-003")
233 .add_file("file-computer-vision-004")
234 .add_file("file-ai-ethics-005")
235 .metadata("domain", "machine_learning")
236 .metadata("search_optimized", "true");
237
238 println!("๐ Created search-optimized vector store:");
239 println!(" Name: {}", search_store.name_ref().unwrap());
240 println!(" Domain: Machine Learning");
241 println!(" Documents: {} files", search_store.file_count());
242
243 // Demonstrate various search patterns
244 println!("\n๐ฏ Search Query Examples:");
245
246 // Basic semantic search
247 let basic_search = search_vector_store("search-store-123", "neural network architectures");
248 println!(" 1. Basic Search:");
249 println!(" Query: '{}'", basic_search.query());
250 println!(" Store: {}", basic_search.vector_store_id());
251
252 // Limited result search
253 let limited_search = search_vector_store_with_limit(
254 "search-store-123",
255 "natural language processing techniques",
256 5,
257 );
258 println!(" 2. Limited Results:");
259 println!(" Query: '{}'", limited_search.query());
260 println!(
261 " Limit: {} results",
262 limited_search.limit_ref().unwrap()
263 );
264
265 // Advanced filtered search
266 let filtered_search =
267 search_vector_store_with_limit("search-store-123", "computer vision applications", 10)
268 .filter("category", "practical_applications")
269 .filter("difficulty", "intermediate");
270
271 println!(" 3. Filtered Search:");
272 println!(" Query: '{}'", filtered_search.query());
273 println!(
274 " Filters: {} applied",
275 filtered_search.filter_ref().len()
276 );
277 for (key, value) in filtered_search.filter_ref() {
278 println!(" {}={}", key, value);
279 }
280
281 // Demonstrate search result processing
282 println!("\n๐ Search Result Processing:");
283 println!(" ๐ฏ Semantic similarity ranking");
284 println!(" ๐ Document excerpt extraction");
285 println!(" ๐ข Relevance score calculation");
286 println!(" ๐ Source location identification");
287 println!(" ๐ Related content suggestions");
288
289 // Show different query types
290 println!("\n๐ง Query Type Examples:");
291 let query_examples = vec![
292 (
293 "Conceptual",
294 "What is machine learning?",
295 "Broad conceptual understanding",
296 ),
297 (
298 "Technical",
299 "How to implement backpropagation?",
300 "Specific technical implementation",
301 ),
302 (
303 "Comparative",
304 "LSTM vs Transformer architectures",
305 "Comparative analysis",
306 ),
307 (
308 "Problem-solving",
309 "Overfitting in neural networks",
310 "Problem identification and solutions",
311 ),
312 (
313 "Application",
314 "Computer vision in healthcare",
315 "Domain-specific applications",
316 ),
317 ];
318
319 for (query_type, query, description) in query_examples {
320 println!(" ๐ฏ {}: '{}'", query_type, query);
321 println!(" Purpose: {}", description);
322 }
323
324 Ok(())
325}Trait Implementationsยง
Sourceยงimpl Clone for VectorStoreSearchBuilder
impl Clone for VectorStoreSearchBuilder
Sourceยงfn clone(&self) -> VectorStoreSearchBuilder
fn clone(&self) -> VectorStoreSearchBuilder
Returns a duplicate of the value. Read more
1.0.0 ยท Sourceยงfn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreAuto Trait Implementationsยง
impl Freeze for VectorStoreSearchBuilder
impl RefUnwindSafe for VectorStoreSearchBuilder
impl Send for VectorStoreSearchBuilder
impl Sync for VectorStoreSearchBuilder
impl Unpin for VectorStoreSearchBuilder
impl UnwindSafe for VectorStoreSearchBuilder
Blanket Implementationsยง
Sourceยงimpl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Sourceยงfn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more