pub enum SqlResult<T> {
    Success(T),
    SuccessWithInfo(T),
    NoData,
    NeedData,
    StillExecuting,
    Error {
        function: &'static str,
    },
}
Expand description

Result of an ODBC function call. Variants hold the same meaning as the constants associated with SqlReturn. This type may hold results, but it is still the responsibility of the user to fetch and handle the diagnostics in case of an Error.

Variants§

§

Success(T)

The function has been executed successfully.

§

SuccessWithInfo(T)

The function has been executed successfully. There have been warnings.

§

NoData

Meaning depends on the function emitting NoData.

§

NeedData

Emmitted by execute in case delayed parameters have been bound and their input values are now required.

§

StillExecuting

The function was started asynchronously and is still executing.

§

Error

Fields

§function: &'static str

Name of the ODBC Api call which caused the error. This might help interpreting associatedif the error ODBC diagnostics if the error is bubbeld all the way up to the end users output, but the context is lost.

The function returned an error state. Check diagnostics.

Implementations§

Use this instead of Self::into_result if you expect SqlResult::NoData to be a valid value. SqlResult::NoData is mapped to Ok(false), all other success values are Ok(true).

Examples found in repository?
src/cursor.rs (line 57)
53
54
55
56
57
58
59
60
61
62
63
64
65
    fn next_row(&mut self) -> Result<Option<CursorRow<'_>>, Error> {
        let row_available = unsafe {
            self.as_stmt_ref()
                .fetch()
                .into_result_bool(&self.as_stmt_ref())?
        };
        let ret = if row_available {
            Some(unsafe { CursorRow::new(self.as_stmt_ref()) })
        } else {
            None
        };
        Ok(ret)
    }
More examples
Hide additional examples
src/environment.rs (line 419)
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
    pub unsafe fn driver_connect_with_hwnd(
        &self,
        connection_string: &str,
        completed_connection_string: &mut OutputStringBuffer,
        driver_completion: DriverCompleteOption,
        parent_window: HWnd,
    ) -> Result<Connection<'_>, Error> {
        let mut connection = self.allocate_connection()?;
        let connection_string = SqlText::new(connection_string);

        let connection_string_is_complete = connection
            .driver_connect(
                &connection_string,
                parent_window,
                completed_connection_string,
                driver_completion.as_sys(),
            )
            .into_result_bool(&connection)?;
        if !connection_string_is_complete {
            return Err(Error::AbortedConnectionStringCompletion);
        }
        Ok(Connection::new(connection))
    }

    /// Get information about available drivers. Only 32 or 64 Bit drivers will be listed, depending
    /// on wether you are building a 32 Bit or 64 Bit application.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use odbc_api::Environment;
    ///
    /// let env = Environment::new ()?;
    /// for driver_info in env.drivers()? {
    ///     println!("{:#?}", driver_info);
    /// }
    ///
    /// # Ok::<_, odbc_api::Error>(())
    /// ```
    pub fn drivers(&self) -> Result<Vec<DriverInfo>, Error> {
        let mut driver_info = Vec::new();

        // Since we have exclusive ownership of the environment handle and we take the lock, we can
        // guarantee that this method is currently the only one changing the state of the internal
        // iterators of the environment.
        let _lock = self.internal_state.lock().unwrap();
        unsafe {
            // Find required buffer size to avoid truncation.
            let (mut desc_len, mut attr_len) = if let Some(res) = self
                .environment
                // Start with first so we are independent of state
                .drivers_buffer_len(FetchOrientation::First)
                .into_result_option(&self.environment)?
            {
                res
            } else {
                // No drivers present
                return Ok(Vec::new());
            };

            // If there are, let's loop over the remaining drivers
            while let Some((candidate_desc_len, candidate_attr_len)) = self
                .environment
                .drivers_buffer_len(FetchOrientation::Next)
                .into_result_option(&self.environment)?
            {
                desc_len = max(candidate_desc_len, desc_len);
                attr_len = max(candidate_attr_len, attr_len);
            }

            // Allocate +1 character extra for terminating zero
            let mut desc_buf = SzBuffer::with_capacity(desc_len as usize);
            let mut attr_buf = SzBuffer::with_capacity(attr_len as usize);

            while self
                .environment
                .drivers_buffer_fill(
                    FetchOrientation::Next,
                    desc_buf.mut_buf(),
                    attr_buf.mut_buf(),
                )
                .into_result_bool(&self.environment)?
            {
                let description = desc_buf.to_utf8();
                let attributes = attr_buf.to_utf8();

                let attributes = attributes_iter(&attributes).collect();

                driver_info.push(DriverInfo {
                    description,
                    attributes,
                });
            }
        }

        Ok(driver_info)
    }

    /// User and system data sources
    ///
    /// # Example
    ///
    /// ```no_run
    /// use odbc_api::Environment;
    ///
    /// let env = Environment::new()?;
    /// for data_source in env.data_sources()? {
    ///     println!("{:#?}", data_source);
    /// }
    ///
    /// # Ok::<_, odbc_api::Error>(())
    /// ```
    pub fn data_sources(&self) -> Result<Vec<DataSourceInfo>, Error> {
        self.data_sources_impl(FetchOrientation::First)
    }

    /// Only system data sources
    ///
    /// # Example
    ///
    /// ```no_run
    /// use odbc_api::Environment;
    ///
    /// let env = Environment::new ()?;
    /// for data_source in env.system_data_sources()? {
    ///     println!("{:#?}", data_source);
    /// }
    ///
    /// # Ok::<_, odbc_api::Error>(())
    /// ```
    pub fn system_data_sources(&self) -> Result<Vec<DataSourceInfo>, Error> {
        self.data_sources_impl(FetchOrientation::FirstSystem)
    }

    /// Only user data sources
    ///
    /// # Example
    ///
    /// ```no_run
    /// use odbc_api::Environment;
    ///
    /// let mut env = unsafe { Environment::new () }?;
    /// for data_source in env.user_data_sources()? {
    ///     println!("{:#?}", data_source);
    /// }
    ///
    /// # Ok::<_, odbc_api::Error>(())
    /// ```
    pub fn user_data_sources(&self) -> Result<Vec<DataSourceInfo>, Error> {
        self.data_sources_impl(FetchOrientation::FirstUser)
    }

    fn data_sources_impl(&self, direction: FetchOrientation) -> Result<Vec<DataSourceInfo>, Error> {
        let mut data_source_info = Vec::new();

        // Since we have exclusive ownership of the environment handle and we take the lock, we can
        // guarantee that this method is currently the only one changing the state of the internal
        // iterators of the environment.
        let _lock = self.internal_state.lock().unwrap();
        unsafe {
            // Find required buffer size to avoid truncation.
            let (mut server_name_len, mut driver_len) = if let Some(res) = self
                .environment
                .data_source_buffer_len(direction)
                .into_result_option(&self.environment)?
            {
                res
            } else {
                // No drivers present
                return Ok(Vec::new());
            };

            // If there are let's loop over the rest
            while let Some((candidate_name_len, candidate_decs_len)) = self
                .environment
                .drivers_buffer_len(FetchOrientation::Next)
                .into_result_option(&self.environment)?
            {
                server_name_len = max(candidate_name_len, server_name_len);
                driver_len = max(candidate_decs_len, driver_len);
            }

            let mut server_name_buf = SzBuffer::with_capacity(server_name_len as usize);
            let mut driver_buf = SzBuffer::with_capacity(driver_len as usize);

            let mut not_empty = self
                .environment
                .data_source_buffer_fill(direction, server_name_buf.mut_buf(), driver_buf.mut_buf())
                .into_result_bool(&self.environment)?;

            while not_empty {
                let server_name = server_name_buf.to_utf8();
                let driver = driver_buf.to_utf8();

                data_source_info.push(DataSourceInfo {
                    server_name,
                    driver,
                });
                not_empty = self
                    .environment
                    .data_source_buffer_fill(
                        FetchOrientation::Next,
                        server_name_buf.mut_buf(),
                        driver_buf.mut_buf(),
                    )
                    .into_result_bool(&self.environment)?;
            }
        }

        Ok(data_source_info)
    }

Self::Success and Self::SuccessWithInfo are mapped to Ok. In case of Self::SuccessWithInfo any diagnostics are logged. Self::Error is mapped to error.

Examples found in repository?
src/parameter_collection.rs (line 50)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    unsafe fn bind_input_parameters_to(&self, stmt: &mut impl Statement) -> Result<(), Error> {
        stmt.bind_input_parameter(1, self).into_result(stmt)
    }
}

unsafe impl<T> InputParameterCollection for [T]
where
    T: InputParameter,
{
    fn parameter_set_size(&self) -> usize {
        1
    }

    unsafe fn bind_input_parameters_to(&self, stmt: &mut impl Statement) -> Result<(), Error> {
        for (index, parameter) in self.iter().enumerate() {
            stmt.bind_input_parameter(index as u16 + 1, parameter)
                .into_result(stmt)?;
        }
        Ok(())
    }
More examples
Hide additional examples
src/parameter/blob.rs (line 98)
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    unsafe fn bind_parameters_to(&mut self, stmt: &mut impl Statement) -> Result<(), Error> {
        stmt.bind_delayed_input_parameter(1, self).into_result(stmt)
    }
}

unsafe impl ParameterTupleElement for &mut BlobParam<'_> {
    unsafe fn bind_to(
        &mut self,
        parameter_number: u16,
        stmt: &mut impl Statement,
    ) -> Result<(), Error> {
        stmt.bind_delayed_input_parameter(parameter_number, *self)
            .into_result(stmt)
    }
src/prepared.rs (line 60)
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    pub fn describe_param(&mut self, parameter_number: u16) -> Result<ParameterDescription, Error> {
        let stmt = self.as_stmt_ref();

        stmt.describe_param(parameter_number).into_result(&stmt)
    }

    /// Number of placeholders which must be provided with [`Self::execute`] in order to execute
    /// this statement. This is equivalent to the number of placeholders used in the SQL string
    /// used to prepare the statement.
    pub fn num_params(&mut self) -> Result<u16, Error> {
        let stmt = self.as_stmt_ref();
        stmt.num_params().into_result(&stmt)
    }

    /// Number of placeholders which must be provided with [`Self::execute`] in order to execute
    /// this statement. This is equivalent to the number of placeholders used in the SQL string
    /// used to prepare the statement.
    ///
    /// ```
    /// use odbc_api::{Connection, Error, handles::ParameterDescription};
    ///
    /// fn collect_parameter_descriptions(
    ///     connection: Connection<'_>
    /// ) -> Result<Vec<ParameterDescription>, Error>{
    ///     // Note the two `?` used as placeholders for the parameters.
    ///     let sql = "INSERT INTO NationalDrink (country, drink) VALUES (?, ?)";
    ///     let mut prepared = connection.prepare(sql)?;
    ///
    ///     let params: Vec<_> = prepared.parameter_descriptions()?.collect::<Result<_,_>>()?;
    ///
    ///     Ok(params)
    /// }
    /// ```
    pub fn parameter_descriptions(
        &mut self,
    ) -> Result<
        impl DoubleEndedIterator<Item = Result<ParameterDescription, Error>>
            + ExactSizeIterator<Item = Result<ParameterDescription, Error>>
            + '_,
        Error,
    > {
        Ok((1..=self.num_params()?).map(|index| self.describe_param(index)))
    }

    /// Unless you want to roll your own column buffer implementation users are encouraged to use
    /// [`Self::into_text_inserter`] instead.
    ///
    /// # Safety
    ///
    /// * Parameters must all be valid for insertion. An example for an invalid parameter would be
    ///   a text buffer with a cell those indiactor value exceeds the maximum element length. This
    ///   can happen after when truncation occurs then writing into a buffer.
    pub unsafe fn unchecked_bind_columnar_array_parameters<C>(
        self,
        parameter_buffers: Vec<C>,
    ) -> Result<ColumnarBulkInserter<S, C>, Error>
    where
        C: ColumnBuffer + HasDataType,
    {
        // We know that statement is a prepared statement.
        ColumnarBulkInserter::new(self.into_statement(), parameter_buffers)
    }

    /// Use this to insert rows of string input into the database.
    ///
    /// ```
    /// use odbc_api::{Connection, Error};
    ///
    /// fn insert_text<'e>(connection: Connection<'e>) -> Result<(), Error>{
    ///     // Insert six rows of text with two columns each into the database in batches of 3. In a
    ///     // real usecase you are likely to achieve a better results with a higher batch size.
    ///
    ///     // Note the two `?` used as placeholders for the parameters.
    ///     let prepared = connection.prepare("INSERT INTO NationalDrink (country, drink) VALUES (?, ?)")?;
    ///     // We assume both parameter inputs never exceed 50 bytes.
    ///     let mut prebound = prepared.into_text_inserter(3, [50, 50])?;
    ///     
    ///     // A cell is an option to byte. We could use `None` to represent NULL but we have no
    ///     // need to do that in this example.
    ///     let as_cell = |s: &'static str| { Some(s.as_bytes()) } ;
    ///
    ///     // First batch of values
    ///     prebound.append(["England", "Tea"].into_iter().map(as_cell))?;
    ///     prebound.append(["Germany", "Beer"].into_iter().map(as_cell))?;
    ///     prebound.append(["Russia", "Vodka"].into_iter().map(as_cell))?;
    ///
    ///     // Execute statement using values bound in buffer.
    ///     prebound.execute()?;
    ///     // Clear buffer contents, otherwise the previous values would stay in the buffer.
    ///     prebound.clear();
    ///
    ///     // Second batch of values
    ///     prebound.append(["India", "Tea"].into_iter().map(as_cell))?;
    ///     prebound.append(["France", "Wine"].into_iter().map(as_cell))?;
    ///     prebound.append(["USA", "Cola"].into_iter().map(as_cell))?;
    ///
    ///     // Send second batch to the database
    ///     prebound.execute()?;
    ///
    ///     Ok(())
    /// }
    /// ```
    pub fn into_text_inserter(
        self,
        capacity: usize,
        max_str_len: impl IntoIterator<Item = usize>,
    ) -> Result<ColumnarBulkInserter<S, TextColumn<u8>>, Error> {
        let max_str_len = max_str_len.into_iter();
        let parameter_buffers = max_str_len
            .map(|max_str_len| TextColumn::new(capacity, max_str_len))
            .collect();
        // Text Columns are created with NULL as default, which is valid for insertion.
        unsafe { self.unchecked_bind_columnar_array_parameters(parameter_buffers) }
    }

    /// A [`crate::ColumnarBulkInserter`] which takes ownership of both the statement and the bound
    /// array parameter buffers.
    ///
    /// ```no_run
    /// use odbc_api::{Connection, Error, IntoParameter, buffers::BufferDesc};
    ///
    /// fn insert_birth_years(
    ///     conn: &Connection,
    ///     names: &[&str],
    ///     years: &[i16]
    /// ) -> Result<(), Error> {
    ///     // All columns must have equal length.
    ///     assert_eq!(names.len(), years.len());
    ///
    ///     let prepared = conn.prepare("INSERT INTO Birthdays (name, year) VALUES (?, ?)")?;
    ///
    ///     // Create a columnar buffer which fits the input parameters.
    ///     let buffer_description = [
    ///         BufferDesc::Text { max_str_len: 255 },
    ///         BufferDesc::I16 { nullable: false },
    ///     ];
    ///     // The capacity must be able to hold at least the largest batch. We do everything in one
    ///     // go, so we set it to the length of the input parameters.
    ///     let capacity = names.len();
    ///     // Allocate memory for the array column parameters and bind it to the statement.
    ///     let mut prebound = prepared.into_column_inserter(capacity, buffer_description)?;
    ///     // Length of this batch
    ///     prebound.set_num_rows(capacity);
    ///
    ///
    ///     // Fill the buffer with values column by column
    ///     let mut col = prebound
    ///         .column_mut(0)
    ///         .as_text_view()
    ///         .expect("We know the name column to hold text.");
    ///
    ///     for (index, name) in names.iter().enumerate() {
    ///         col.set_cell(index, Some(name.as_bytes()));
    ///     }
    ///
    ///     let col = prebound
    ///         .column_mut(1)
    ///         .as_slice::<i16>()
    ///         .expect("We know the year column to hold i16.");
    ///     col.copy_from_slice(years);
    ///
    ///     prebound.execute()?;
    ///     Ok(())
    /// }
    /// ```
    pub fn into_column_inserter(
        self,
        capacity: usize,
        descriptions: impl IntoIterator<Item = BufferDesc>,
    ) -> Result<ColumnarBulkInserter<S, AnyBuffer>, Error> {
        let parameter_buffers = descriptions
            .into_iter()
            .map(|desc| AnyBuffer::from_desc(capacity, desc))
            .collect();
        unsafe { self.unchecked_bind_columnar_array_parameters(parameter_buffers) }
    }

    /// A [`crate::ColumnarBulkInserter`] which has ownership of the bound array parameter buffers
    /// and borrows the statement. For most usecases [`Self::into_any_column_inserter`] is what you
    /// want to use, yet on some instances you may want to bind new paramater buffers to the same
    /// prepared statement. E.g. to grow the capacity dynamicaly during insertions with several
    /// chunks. In such usecases you may only want to borrow the prepared statemnt, so it can be
    /// reused with a different set of parameter buffers.
    pub fn column_inserter(
        &mut self,
        capacity: usize,
        descriptions: impl IntoIterator<Item = BufferDesc>,
    ) -> Result<ColumnarBulkInserter<StatementRef<'_>, AnyBuffer>, Error> {
        let stmt = self.statement.as_stmt_ref();

        let parameter_buffers = descriptions
            .into_iter()
            .map(|desc| AnyBuffer::from_desc(capacity, desc))
            .collect();
        unsafe { ColumnarBulkInserter::new(stmt, parameter_buffers) }
    }

    /// Number of rows affected by the last `INSERT`, `UPDATE` or `DELETE` statment. May return
    /// `None` if row count is not available. Some drivers may also allow to use this to determine
    /// how many rows have been fetched using `SELECT`. Most drivers however only know how many rows
    /// have been fetched after they have been fetched.
    ///
    /// ```
    /// use odbc_api::{Connection, Error, IntoParameter};
    ///
    /// /// Deletes all comments for every user in the slice. Returns the number of deleted
    /// /// comments.
    /// pub fn delete_all_comments_from(
    ///     users: &[&str],
    ///     conn: Connection<'_>,
    /// ) -> Result<usize, Error>
    /// {
    ///     // Store prepared query for fast repeated execution.
    ///     let mut prepared = conn.prepare("DELETE FROM Comments WHERE user=?")?;
    ///     let mut total_deleted_comments = 0;
    ///     for user in users {
    ///         prepared.execute(&user.into_parameter())?;
    ///         total_deleted_comments += prepared
    ///             .row_count()?
    ///             .expect("Row count must always be available for DELETE statements.");
    ///     }
    ///     Ok(total_deleted_comments)
    /// }
    /// ```
    pub fn row_count(&mut self) -> Result<Option<usize>, Error> {
        let stmt = self.statement.as_stmt_ref();
        stmt.row_count().into_result(&stmt).map(|count| {
            // ODBC returns -1 in case a row count is not available
            if count == -1 {
                None
            } else {
                Some(count.try_into().unwrap())
            }
        })
    }
src/environment.rs (line 123)
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
    pub fn set_connection_pooling_matching(&mut self, matching: AttrCpMatch) -> Result<(), Error> {
        self.environment
            .set_connection_pooling_matching(matching)
            .into_result(&self.environment)
    }

    /// Entry point into this API. Allocates a new ODBC Environment and declares to the driver
    /// manager that the Application wants to use ODBC version 3.8.
    ///
    /// # Safety
    ///
    /// There may only be one ODBC environment in any process at any time. Take care using this
    /// function in unit tests, as these run in parallel by default in Rust. Also no library should
    /// probably wrap the creation of an odbc environment into a safe function call. This is because
    /// using two of these "safe" libraries at the same time in different parts of your program may
    /// lead to race condition thus violating Rust's safety guarantees.
    ///
    /// Creating one environment in your binary is safe however.
    pub fn new() -> Result<Self, Error> {
        let result = handles::Environment::new();

        let environment = match result {
            SqlResult::Success(env) => env,
            SqlResult::SuccessWithInfo(env) => {
                log_diagnostics(&env);
                env
            }
            SqlResult::Error { .. } => return Err(Error::FailedAllocatingEnvironment),
            other => panic!("Unexpected return value '{:?}'", other),
        };

        debug!("ODBC Environment created.");

        let result = environment
            .declare_version(ODBC_API_VERSION)
            .into_result(&environment);

        // Translate invalid attribute into a more meaningful error, provided the additional
        // context that we know we tried to set version number.
        result.provide_context_for_diagnostic(|record, function| match record.state {
            // INVALID_STATE_TRANSACTION has been seen with some really old version of unixODBC on
            // a CentOS used to build manylinux wheels, with the preinstalled ODBC version.
            // INVALID_ATTRIBUTE_VALUE is the correct status code to emit for a driver manager if it
            // does not know the version and has been seen with an unknown version of unixODBC on an
            // Oracle Linux.
            State::INVALID_STATE_TRANSACTION | State::INVALID_ATTRIBUTE_VALUE => {
                Error::UnsupportedOdbcApiVersion(record)
            }
            _ => Error::Diagnostics { record, function },
        })?;

        Ok(Self {
            environment,
            internal_state: Mutex::new(()),
        })
    }

    /// Allocates a connection handle and establishes connections to a driver and a data source.
    ///
    /// * See [Connecting with SQLConnect][1]
    /// * See [SQLConnectFunction][2]
    ///
    /// # Arguments
    ///
    /// * `data_source_name` - Data source name. The data might be located on the same computer as
    /// the program, or on another computer somewhere on a network.
    /// * `user` - User identifier.
    /// * `pwd` - Authentication string (typically the password).
    ///
    /// # Example
    ///
    /// ```no_run
    /// use odbc_api::Environment;
    ///
    /// let env = Environment::new()?;
    ///
    /// let mut conn = env.connect("YourDatabase", "SA", "My@Test@Password1")?;
    /// # Ok::<(), odbc_api::Error>(())
    /// ```
    ///
    /// [1]: https://docs.microsoft.com/sql/odbc/reference/syntax/sqlconnect-function
    /// [2]: https://docs.microsoft.com/sql/odbc/reference/syntax/sqlconnect-function
    pub fn connect(
        &self,
        data_source_name: &str,
        user: &str,
        pwd: &str,
    ) -> Result<Connection<'_>, Error> {
        let data_source_name = SqlText::new(data_source_name);
        let user = SqlText::new(user);
        let pwd = SqlText::new(pwd);

        let mut connection = self.allocate_connection()?;
        connection
            .connect(&data_source_name, &user, &pwd)
            .into_result(&connection)?;
        Ok(Connection::new(connection))
    }

    /// Allocates a connection handle and establishes connections to a driver and a data source.
    ///
    /// An alternative to `connect`. It supports data sources that require more connection
    /// information than the three arguments in `connect` and data sources that are not defined in
    /// the system information.
    ///
    /// To find out your connection string try: <https://www.connectionstrings.com/>
    ///
    /// # Example
    ///
    /// ```no_run
    /// use odbc_api::Environment;
    ///
    /// let env = Environment::new()?;
    ///
    /// let connection_string = "
    ///     Driver={ODBC Driver 17 for SQL Server};\
    ///     Server=localhost;\
    ///     UID=SA;\
    ///     PWD=My@Test@Password1;\
    /// ";
    ///
    /// let mut conn = env.connect_with_connection_string(connection_string)?;
    /// # Ok::<(), odbc_api::Error>(())
    /// ```
    pub fn connect_with_connection_string(
        &self,
        connection_string: &str,
    ) -> Result<Connection<'_>, Error> {
        let connection_string = SqlText::new(connection_string);
        let mut connection = self.allocate_connection()?;
        connection
            .connect_with_connection_string(&connection_string)
            .into_result(&connection)?;
        Ok(Connection::new(connection))
    }

    /// Allocates a connection handle and establishes connections to a driver and a data source.
    ///
    /// An alternative to `connect` and `connect_with_connection_string`. This method can be
    /// provided with an incomplete or even empty connection string. If any additional information
    /// is required, the driver manager/driver will attempt to create a prompt to allow the user to
    /// provide the additional information.
    ///
    /// If the connection is successful, the complete connection string (including any information
    /// provided by the user through a prompt) is returned.
    ///
    /// # Parameters
    ///
    /// * `connection_string`: Connection string.
    /// * `completed_connection_string`: Output buffer with the complete connection string. It is
    ///   recommended to choose a buffer with at least `1024` bytes length. **Note**: Some driver
    ///   implementation have poor error handling in case the provided buffer is too small. At the
    ///   time of this writing:
    ///   * Maria DB crashes with STATUS_TACK_BUFFER_OVERRUN
    ///   * SQLite does not change the output buffer at all and does not indicate truncation.
    /// * `driver_completion`: Specifies how and if the driver manager uses a prompt to complete
    ///   the provided connection string. For arguments other than
    ///   [`crate::DriverCompleteOption::NoPrompt`] this method is going to create a message only
    ///   parent window for you on windows. On other platform this method is going to panic. In case
    ///   you want to provide your own parent window please use [`Self::driver_connect_with_hwnd`].
    ///
    /// # Examples
    ///
    /// In the first example, we intentionally provide a blank connection string so the user will be
    /// prompted to select a data source to use. Note that this functionality is only available on
    /// windows.
    ///
    /// ```no_run
    /// use odbc_api::{Environment, handles::OutputStringBuffer, DriverCompleteOption};
    ///
    /// let env = Environment::new()?;
    ///
    /// let mut output_buffer = OutputStringBuffer::with_buffer_size(1024);
    /// let connection = env.driver_connect(
    ///     "",
    ///     &mut output_buffer,
    ///     DriverCompleteOption::Prompt,
    /// )?;
    ///
    /// // Check that the output buffer has been large enough to hold the entire connection string.
    /// assert!(!output_buffer.is_truncated());
    ///
    /// // Now `connection_string` will contain the data source selected by the user.
    /// let connection_string = output_buffer.to_utf8();
    /// # Ok::<_,odbc_api::Error>(())
    /// ```
    ///
    /// In the following examples we specify a DSN that requires login credentials, but the DSN does
    /// not provide those credentials. Instead, the user will be prompted for a UID and PWD. The
    /// returned `connection_string` will contain the `UID` and `PWD` provided by the user. Note
    /// that this functionality is currently only available on windows targets.
    ///
    /// ```
    /// # use odbc_api::DriverCompleteOption;
    /// # #[cfg(target_os = "windows")]
    /// # fn f(
    /// #    mut output_buffer: odbc_api::handles::OutputStringBuffer,
    /// #    env: odbc_api::Environment,
    /// # ) -> Result<(), odbc_api::Error> {
    /// let without_uid_or_pwd = "DSN=SomeSharedDatabase;";
    /// let connection = env.driver_connect(
    ///     &without_uid_or_pwd,
    ///     &mut output_buffer,
    ///     DriverCompleteOption::Complete,
    /// )?;
    /// let connection_string = output_buffer.to_utf8();
    ///
    /// // Now `connection_string` might be something like
    /// // `DSN=SomeSharedDatabase;UID=SA;PWD=My@Test@Password1;`
    /// # Ok(()) }
    /// ```
    ///
    /// In this case, we use a DSN that is already sufficient and does not require a prompt. Because
    /// a prompt is not needed, `window` is also not required. The returned `connection_string` will
    /// be mostly the same as `already_sufficient` but the driver may append some extra attributes.
    ///
    /// ```
    /// # use odbc_api::DriverCompleteOption;
    /// # fn f(
    /// #    mut output_buffer: odbc_api::handles::OutputStringBuffer,
    /// #    env: odbc_api::Environment,
    /// # ) -> Result<(), odbc_api::Error> {
    /// let already_sufficient = "DSN=MicrosoftAccessFile;";
    /// let connection = env.driver_connect(
    ///    &already_sufficient,
    ///    &mut output_buffer,
    ///    DriverCompleteOption::NoPrompt,
    /// )?;
    /// let connection_string = output_buffer.to_utf8();
    ///
    /// // Now `connection_string` might be something like
    /// // `DSN=MicrosoftAccessFile;DBQ=C:\Db\Example.accdb;DriverId=25;FIL=MS Access;MaxBufferSize=2048;`
    /// # Ok(()) }
    /// ```
    pub fn driver_connect(
        &self,
        connection_string: &str,
        completed_connection_string: &mut OutputStringBuffer,
        driver_completion: DriverCompleteOption,
    ) -> Result<Connection<'_>, Error> {
        #[cfg(target_os = "windows")]
        let parent_window = match driver_completion {
            DriverCompleteOption::NoPrompt => None,
            _ => {
                if !cfg!(target_os = "windows") {
                    panic!("Prompt is not supported on non windows platforms. Use `NoPrompt`.")
                }
                // We need a parent window, let's provide a message only window.
                Some(
                    WindowBuilder::new()
                        .with_visible(false)
                        .build(&EventLoop::new())
                        .unwrap(),
                )
            }
        };
        #[cfg(target_os = "windows")]
        let hwnd = parent_window
            .as_ref()
            .map(|window| window.hwnd() as HWnd)
            .unwrap_or(null_mut());
        #[cfg(not(target_os = "windows"))]
        let hwnd = null_mut();
        unsafe {
            self.driver_connect_with_hwnd(
                connection_string,
                completed_connection_string,
                driver_completion,
                hwnd,
            )
        }
    }

    /// Allows to call driver connect with a user supplied HWnd. Same as [`Self::driver_connect`],
    /// but with the possibility to provide your own parent window handle in case you want to show
    /// a prompt to the user.
    ///
    /// # Safety
    ///
    /// `parent_window` must be a valid window handle, to a window type supported by the ODBC driver
    /// manager. On windows this is a plain window handle, which is of course understood by the
    /// windows built in ODBC driver manager. Other working combinations are unknown to the author.
    pub unsafe fn driver_connect_with_hwnd(
        &self,
        connection_string: &str,
        completed_connection_string: &mut OutputStringBuffer,
        driver_completion: DriverCompleteOption,
        parent_window: HWnd,
    ) -> Result<Connection<'_>, Error> {
        let mut connection = self.allocate_connection()?;
        let connection_string = SqlText::new(connection_string);

        let connection_string_is_complete = connection
            .driver_connect(
                &connection_string,
                parent_window,
                completed_connection_string,
                driver_completion.as_sys(),
            )
            .into_result_bool(&connection)?;
        if !connection_string_is_complete {
            return Err(Error::AbortedConnectionStringCompletion);
        }
        Ok(Connection::new(connection))
    }

    /// Get information about available drivers. Only 32 or 64 Bit drivers will be listed, depending
    /// on wether you are building a 32 Bit or 64 Bit application.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use odbc_api::Environment;
    ///
    /// let env = Environment::new ()?;
    /// for driver_info in env.drivers()? {
    ///     println!("{:#?}", driver_info);
    /// }
    ///
    /// # Ok::<_, odbc_api::Error>(())
    /// ```
    pub fn drivers(&self) -> Result<Vec<DriverInfo>, Error> {
        let mut driver_info = Vec::new();

        // Since we have exclusive ownership of the environment handle and we take the lock, we can
        // guarantee that this method is currently the only one changing the state of the internal
        // iterators of the environment.
        let _lock = self.internal_state.lock().unwrap();
        unsafe {
            // Find required buffer size to avoid truncation.
            let (mut desc_len, mut attr_len) = if let Some(res) = self
                .environment
                // Start with first so we are independent of state
                .drivers_buffer_len(FetchOrientation::First)
                .into_result_option(&self.environment)?
            {
                res
            } else {
                // No drivers present
                return Ok(Vec::new());
            };

            // If there are, let's loop over the remaining drivers
            while let Some((candidate_desc_len, candidate_attr_len)) = self
                .environment
                .drivers_buffer_len(FetchOrientation::Next)
                .into_result_option(&self.environment)?
            {
                desc_len = max(candidate_desc_len, desc_len);
                attr_len = max(candidate_attr_len, attr_len);
            }

            // Allocate +1 character extra for terminating zero
            let mut desc_buf = SzBuffer::with_capacity(desc_len as usize);
            let mut attr_buf = SzBuffer::with_capacity(attr_len as usize);

            while self
                .environment
                .drivers_buffer_fill(
                    FetchOrientation::Next,
                    desc_buf.mut_buf(),
                    attr_buf.mut_buf(),
                )
                .into_result_bool(&self.environment)?
            {
                let description = desc_buf.to_utf8();
                let attributes = attr_buf.to_utf8();

                let attributes = attributes_iter(&attributes).collect();

                driver_info.push(DriverInfo {
                    description,
                    attributes,
                });
            }
        }

        Ok(driver_info)
    }

    /// User and system data sources
    ///
    /// # Example
    ///
    /// ```no_run
    /// use odbc_api::Environment;
    ///
    /// let env = Environment::new()?;
    /// for data_source in env.data_sources()? {
    ///     println!("{:#?}", data_source);
    /// }
    ///
    /// # Ok::<_, odbc_api::Error>(())
    /// ```
    pub fn data_sources(&self) -> Result<Vec<DataSourceInfo>, Error> {
        self.data_sources_impl(FetchOrientation::First)
    }

    /// Only system data sources
    ///
    /// # Example
    ///
    /// ```no_run
    /// use odbc_api::Environment;
    ///
    /// let env = Environment::new ()?;
    /// for data_source in env.system_data_sources()? {
    ///     println!("{:#?}", data_source);
    /// }
    ///
    /// # Ok::<_, odbc_api::Error>(())
    /// ```
    pub fn system_data_sources(&self) -> Result<Vec<DataSourceInfo>, Error> {
        self.data_sources_impl(FetchOrientation::FirstSystem)
    }

    /// Only user data sources
    ///
    /// # Example
    ///
    /// ```no_run
    /// use odbc_api::Environment;
    ///
    /// let mut env = unsafe { Environment::new () }?;
    /// for data_source in env.user_data_sources()? {
    ///     println!("{:#?}", data_source);
    /// }
    ///
    /// # Ok::<_, odbc_api::Error>(())
    /// ```
    pub fn user_data_sources(&self) -> Result<Vec<DataSourceInfo>, Error> {
        self.data_sources_impl(FetchOrientation::FirstUser)
    }

    fn data_sources_impl(&self, direction: FetchOrientation) -> Result<Vec<DataSourceInfo>, Error> {
        let mut data_source_info = Vec::new();

        // Since we have exclusive ownership of the environment handle and we take the lock, we can
        // guarantee that this method is currently the only one changing the state of the internal
        // iterators of the environment.
        let _lock = self.internal_state.lock().unwrap();
        unsafe {
            // Find required buffer size to avoid truncation.
            let (mut server_name_len, mut driver_len) = if let Some(res) = self
                .environment
                .data_source_buffer_len(direction)
                .into_result_option(&self.environment)?
            {
                res
            } else {
                // No drivers present
                return Ok(Vec::new());
            };

            // If there are let's loop over the rest
            while let Some((candidate_name_len, candidate_decs_len)) = self
                .environment
                .drivers_buffer_len(FetchOrientation::Next)
                .into_result_option(&self.environment)?
            {
                server_name_len = max(candidate_name_len, server_name_len);
                driver_len = max(candidate_decs_len, driver_len);
            }

            let mut server_name_buf = SzBuffer::with_capacity(server_name_len as usize);
            let mut driver_buf = SzBuffer::with_capacity(driver_len as usize);

            let mut not_empty = self
                .environment
                .data_source_buffer_fill(direction, server_name_buf.mut_buf(), driver_buf.mut_buf())
                .into_result_bool(&self.environment)?;

            while not_empty {
                let server_name = server_name_buf.to_utf8();
                let driver = driver_buf.to_utf8();

                data_source_info.push(DataSourceInfo {
                    server_name,
                    driver,
                });
                not_empty = self
                    .environment
                    .data_source_buffer_fill(
                        FetchOrientation::Next,
                        server_name_buf.mut_buf(),
                        driver_buf.mut_buf(),
                    )
                    .into_result_bool(&self.environment)?;
            }
        }

        Ok(data_source_info)
    }

    fn allocate_connection(&self) -> Result<handles::Connection, Error> {
        // Hold lock diagnostics errors are consumed in this thread.
        let _lock = self.internal_state.lock().unwrap();
        self.environment
            .allocate_connection()
            .into_result(&self.environment)
    }
src/parameter_collection/tuple.rs (line 83)
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    unsafe fn bind_to(
        &mut self,
        parameter_number: u16,
        stmt: &mut impl Statement,
    ) -> Result<(), Error> {
        stmt.bind_input_parameter(parameter_number, *self)
            .into_result(stmt)
    }
}

/// Bind mutable references as input/output parameter.
unsafe impl<'a, T> ParameterTupleElement for InOut<'a, T>
where
    T: OutputParameter,
{
    unsafe fn bind_to(
        &mut self,
        parameter_number: u16,
        stmt: &mut impl Statement,
    ) -> Result<(), Error> {
        stmt.bind_parameter(parameter_number, odbc_sys::ParamType::InputOutput, self.0)
            .into_result(stmt)
    }
}

/// Mutable references wrapped in `Out` are bound as output parameters.
unsafe impl<'a, T> ParameterTupleElement for Out<'a, T>
where
    T: OutputParameter,
{
    unsafe fn bind_to(
        &mut self,
        parameter_number: u16,
        stmt: &mut impl Statement,
    ) -> Result<(), Error> {
        stmt.bind_parameter(parameter_number, odbc_sys::ParamType::Output, self.0)
            .into_result(stmt)
    }
src/buffers/columnar.rs (line 102)
100
101
102
103
104
105
    unsafe fn bind_colmuns_to_cursor(&mut self, mut cursor: StatementRef<'_>) -> Result<(), Error> {
        for (col_number, column) in &mut self.columns {
            cursor.bind_col(*col_number, column).into_result(&cursor)?;
        }
        Ok(())
    }

Like Self::into_result, but SqlResult::NoData is mapped to None, and any success is mapped to Some.

Examples found in repository?
src/environment.rs (line 454)
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
    pub fn drivers(&self) -> Result<Vec<DriverInfo>, Error> {
        let mut driver_info = Vec::new();

        // Since we have exclusive ownership of the environment handle and we take the lock, we can
        // guarantee that this method is currently the only one changing the state of the internal
        // iterators of the environment.
        let _lock = self.internal_state.lock().unwrap();
        unsafe {
            // Find required buffer size to avoid truncation.
            let (mut desc_len, mut attr_len) = if let Some(res) = self
                .environment
                // Start with first so we are independent of state
                .drivers_buffer_len(FetchOrientation::First)
                .into_result_option(&self.environment)?
            {
                res
            } else {
                // No drivers present
                return Ok(Vec::new());
            };

            // If there are, let's loop over the remaining drivers
            while let Some((candidate_desc_len, candidate_attr_len)) = self
                .environment
                .drivers_buffer_len(FetchOrientation::Next)
                .into_result_option(&self.environment)?
            {
                desc_len = max(candidate_desc_len, desc_len);
                attr_len = max(candidate_attr_len, attr_len);
            }

            // Allocate +1 character extra for terminating zero
            let mut desc_buf = SzBuffer::with_capacity(desc_len as usize);
            let mut attr_buf = SzBuffer::with_capacity(attr_len as usize);

            while self
                .environment
                .drivers_buffer_fill(
                    FetchOrientation::Next,
                    desc_buf.mut_buf(),
                    attr_buf.mut_buf(),
                )
                .into_result_bool(&self.environment)?
            {
                let description = desc_buf.to_utf8();
                let attributes = attr_buf.to_utf8();

                let attributes = attributes_iter(&attributes).collect();

                driver_info.push(DriverInfo {
                    description,
                    attributes,
                });
            }
        }

        Ok(driver_info)
    }

    /// User and system data sources
    ///
    /// # Example
    ///
    /// ```no_run
    /// use odbc_api::Environment;
    ///
    /// let env = Environment::new()?;
    /// for data_source in env.data_sources()? {
    ///     println!("{:#?}", data_source);
    /// }
    ///
    /// # Ok::<_, odbc_api::Error>(())
    /// ```
    pub fn data_sources(&self) -> Result<Vec<DataSourceInfo>, Error> {
        self.data_sources_impl(FetchOrientation::First)
    }

    /// Only system data sources
    ///
    /// # Example
    ///
    /// ```no_run
    /// use odbc_api::Environment;
    ///
    /// let env = Environment::new ()?;
    /// for data_source in env.system_data_sources()? {
    ///     println!("{:#?}", data_source);
    /// }
    ///
    /// # Ok::<_, odbc_api::Error>(())
    /// ```
    pub fn system_data_sources(&self) -> Result<Vec<DataSourceInfo>, Error> {
        self.data_sources_impl(FetchOrientation::FirstSystem)
    }

    /// Only user data sources
    ///
    /// # Example
    ///
    /// ```no_run
    /// use odbc_api::Environment;
    ///
    /// let mut env = unsafe { Environment::new () }?;
    /// for data_source in env.user_data_sources()? {
    ///     println!("{:#?}", data_source);
    /// }
    ///
    /// # Ok::<_, odbc_api::Error>(())
    /// ```
    pub fn user_data_sources(&self) -> Result<Vec<DataSourceInfo>, Error> {
        self.data_sources_impl(FetchOrientation::FirstUser)
    }

    fn data_sources_impl(&self, direction: FetchOrientation) -> Result<Vec<DataSourceInfo>, Error> {
        let mut data_source_info = Vec::new();

        // Since we have exclusive ownership of the environment handle and we take the lock, we can
        // guarantee that this method is currently the only one changing the state of the internal
        // iterators of the environment.
        let _lock = self.internal_state.lock().unwrap();
        unsafe {
            // Find required buffer size to avoid truncation.
            let (mut server_name_len, mut driver_len) = if let Some(res) = self
                .environment
                .data_source_buffer_len(direction)
                .into_result_option(&self.environment)?
            {
                res
            } else {
                // No drivers present
                return Ok(Vec::new());
            };

            // If there are let's loop over the rest
            while let Some((candidate_name_len, candidate_decs_len)) = self
                .environment
                .drivers_buffer_len(FetchOrientation::Next)
                .into_result_option(&self.environment)?
            {
                server_name_len = max(candidate_name_len, server_name_len);
                driver_len = max(candidate_decs_len, driver_len);
            }

            let mut server_name_buf = SzBuffer::with_capacity(server_name_len as usize);
            let mut driver_buf = SzBuffer::with_capacity(driver_len as usize);

            let mut not_empty = self
                .environment
                .data_source_buffer_fill(direction, server_name_buf.mut_buf(), driver_buf.mut_buf())
                .into_result_bool(&self.environment)?;

            while not_empty {
                let server_name = server_name_buf.to_utf8();
                let driver = driver_buf.to_utf8();

                data_source_info.push(DataSourceInfo {
                    server_name,
                    driver,
                });
                not_empty = self
                    .environment
                    .data_source_buffer_fill(
                        FetchOrientation::Next,
                        server_name_buf.mut_buf(),
                        driver_buf.mut_buf(),
                    )
                    .into_result_bool(&self.environment)?;
            }
        }

        Ok(data_source_info)
    }

Most flexible way of converting an SqlResult to an idiomatic Result.

Parameters
  • handle: This handle is used to extract diagnostics in case self is SqlResult::SuccessWithInfo or SqlResult::Error.
  • error_for_truncation: Intended to be used to be used after bulk fetching into a buffer. If error_for_truncation is true any diagnostics are inspected for truncation. If any truncation is found an error is returned.
  • no_data: Controls the behaviour for SqlResult::NoData. None indicates that the result is never expected to be SqlResult::NoData and would panic in that case. Some(value) would cause SqlResult::NoData to be mapped to Ok(value).
  • need_data: Controls the behaviour for SqlResult::NeedData. None indicates that the result is never expected to be SqlResult::NeedData and would panic in that case. Some(value) would cause SqlResult::NeedData to be mapped to Ok(value).
Examples found in repository?
src/error.rs (line 172)
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    pub fn into_result_bool(self, handle: &impl Diagnostics) -> Result<bool, Error> {
        self.on_success(|| true)
            .into_result_with(handle, false, Some(false), None)
    }
}

// Define that here rather than in `sql_result` mod to keep the `handles` module entirely agnostic
// about the top level `Error` type.
impl<T> SqlResult<T> {
    /// [`Self::Success`] and [`Self::SuccessWithInfo`] are mapped to Ok. In case of
    /// [`Self::SuccessWithInfo`] any diagnostics are logged. [`Self::Error`] is mapped to error.
    pub fn into_result(self, handle: &impl Diagnostics) -> Result<T, Error> {
        let error_for_truncation = false;
        self.into_result_with(handle, error_for_truncation, None, None)
    }

    /// Like [`Self::into_result`], but [`SqlResult::NoData`] is mapped to `None`, and any success
    /// is mapped to `Some`.
    pub fn into_result_option(self, handle: &impl Diagnostics) -> Result<Option<T>, Error> {
        let error_for_truncation = false;
        self.map(Some)
            .into_result_with(handle, error_for_truncation, Some(None), None)
    }
More examples
Hide additional examples
src/cursor.rs (line 630)
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
fn error_handling_for_fetch(
    result: SqlResult<()>,
    mut stmt: StatementRef,
    error_for_truncation: bool,
) -> Result<bool, Error> {
    let has_row = result
        .on_success(|| true)
        .into_result_with(&stmt.as_stmt_ref(), error_for_truncation, Some(false), None)
        // Oracles ODBC driver does not support 64Bit integers. Furthermore, it does not
        // tell the it to the user than binding parameters, but rather now then we fetch
        // results. The error code retruned is `HY004` rather then `HY003` which should
        // be used to indicate invalid buffer types.
        .provide_context_for_diagnostic(|record, function| {
            if record.state == State::INVALID_SQL_DATA_TYPE {
                Error::OracleOdbcDriverDoesNotSupport64Bit(record)
            } else {
                Error::Diagnostics { record, function }
            }
        })?;
    Ok(has_row)
}
src/execute.rs (line 108)
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
pub unsafe fn execute<S>(
    mut statement: S,
    query: Option<&SqlText<'_>>,
) -> Result<Option<CursorImpl<S>>, Error>
where
    S: AsStatementRef,
{
    let mut stmt = statement.as_stmt_ref();
    let result = if let Some(sql) = query {
        // We execute an unprepared "one shot query"
        stmt.exec_direct(sql)
    } else {
        // We execute a prepared query
        stmt.execute()
    };

    // If delayed parameters (e.g. input streams) are bound we might need to put data in order to
    // execute.
    let need_data =
        result
            .on_success(|| false)
            .into_result_with(&stmt, false, Some(false), Some(true))?;

    if need_data {
        // Check if any delayed parameters have been bound which stream data to the database at
        // statement execution time. Loops over each bound stream.
        while let Some(blob_ptr) = stmt.param_data().into_result(&stmt)? {
            // The safe interfaces currently exclusively bind pointers to `Blob` trait objects
            let blob_ptr: *mut &mut dyn Blob = transmute(blob_ptr);
            let blob_ref = &mut *blob_ptr;
            // Loop over all batches within each blob
            while let Some(batch) = blob_ref.next_batch().map_err(Error::FailedReadingInput)? {
                stmt.put_binary_batch(batch).into_result(&stmt)?;
            }
        }
    }

    // Check if a result set has been created.
    if stmt.num_result_cols().into_result(&stmt)? == 0 {
        Ok(None)
    } else {
        // Safe: `statement` is in cursor state.
        let cursor = CursorImpl::new(statement);
        Ok(Some(cursor))
    }
}

/// # Safety
///
/// * Execute may dereference pointers to bound parameters, so these must guaranteed to be valid
///   then calling this function.
/// * Furthermore all bound delayed parameters must be of type `*mut &mut dyn Blob`.
pub async unsafe fn execute_polling<S>(
    mut statement: S,
    query: Option<&SqlText<'_>>,
    mut sleep: impl Sleep,
) -> Result<Option<CursorPolling<S>>, Error>
where
    S: AsStatementRef,
{
    let mut stmt = statement.as_stmt_ref();
    let result = if let Some(sql) = query {
        // We execute an unprepared "one shot query"
        wait_for(|| stmt.exec_direct(sql), &mut sleep).await
    } else {
        // We execute a prepared query
        wait_for(|| stmt.execute(), &mut sleep).await
    };

    // If delayed parameters (e.g. input streams) are bound we might need to put data in order to
    // execute.
    let need_data =
        result
            .on_success(|| false)
            .into_result_with(&stmt, false, Some(false), Some(true))?;

    if need_data {
        // Check if any delayed parameters have been bound which stream data to the database at
        // statement execution time. Loops over each bound stream.
        while let Some(blob_ptr) = stmt.param_data().into_result(&stmt)? {
            // The safe interfaces currently exclusively bind pointers to `Blob` trait objects
            let blob_ptr: *mut &mut dyn Blob = transmute(blob_ptr);
            let blob_ref = &mut *blob_ptr;
            // Loop over all batches within each blob
            while let Some(batch) = blob_ref.next_batch().map_err(Error::FailedReadingInput)? {
                let result = wait_for(|| stmt.put_binary_batch(batch), &mut sleep).await;
                result.into_result(&stmt)?;
            }
        }
    }

    // Check if a result set has been created.
    let num_result_cols = wait_for(|| stmt.num_result_cols(), &mut sleep)
        .await
        .into_result(&stmt)?;
    if num_result_cols == 0 {
        Ok(None)
    } else {
        // Safe: `statement` is in cursor state.
        let cursor = CursorPolling::new(statement);
        Ok(Some(cursor))
    }
}

Append a return value a successful to Result

Examples found in repository?
src/error.rs (line 171)
170
171
172
173
    pub fn into_result_bool(self, handle: &impl Diagnostics) -> Result<bool, Error> {
        self.on_success(|| true)
            .into_result_with(handle, false, Some(false), None)
    }
More examples
Hide additional examples
src/handles/statement.rs (line 368)
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
    fn num_result_cols(&self) -> SqlResult<i16> {
        let mut out: i16 = 0;
        unsafe { SQLNumResultCols(self.as_sys(), &mut out) }
            .into_sql_result("SQLNumResultCols")
            .on_success(|| out)
    }

    /// Number of placeholders of a prepared query.
    fn num_params(&self) -> SqlResult<u16> {
        let mut out: i16 = 0;
        unsafe { SQLNumParams(self.as_sys(), &mut out) }
            .into_sql_result("SQLNumParams")
            .on_success(|| out.try_into().unwrap())
    }

    /// Sets the batch size for bulk cursors, if retrieving many rows at once.
    ///
    /// # Safety
    ///
    /// It is the callers responsibility to ensure that buffers bound using `bind_col` can hold the
    /// specified amount of rows.
    unsafe fn set_row_array_size(&mut self, size: usize) -> SqlResult<()> {
        assert!(size > 0);
        sql_set_stmt_attr(
            self.as_sys(),
            StatementAttribute::RowArraySize,
            size as Pointer,
            0,
        )
        .into_sql_result("SQLSetStmtAttr")
    }

    /// Specifies the number of values for each parameter. If it is greater than 1, the data and
    /// indicator buffers of the statement point to arrays. The cardinality of each array is equal
    /// to the value of this field.
    ///
    /// # Safety
    ///
    /// The bound buffers must at least hold the number of elements specified in this call then the
    /// statement is executed.
    unsafe fn set_paramset_size(&mut self, size: usize) -> SqlResult<()> {
        assert!(size > 0);
        sql_set_stmt_attr(
            self.as_sys(),
            StatementAttribute::ParamsetSize,
            size as Pointer,
            0,
        )
        .into_sql_result("SQLSetStmtAttr")
    }

    /// Sets the binding type to columnar binding for batch cursors.
    ///
    /// Any Positive number indicates a row wise binding with that row length. `0` indicates a
    /// columnar binding.
    ///
    /// # Safety
    ///
    /// It is the callers responsibility to ensure that the bound buffers match the memory layout
    /// specified by this function.
    unsafe fn set_row_bind_type(&mut self, row_size: usize) -> SqlResult<()> {
        sql_set_stmt_attr(
            self.as_sys(),
            StatementAttribute::RowBindType,
            row_size as Pointer,
            0,
        )
        .into_sql_result("SQLSetStmtAttr")
    }

    fn set_metadata_id(&mut self, metadata_id: bool) -> SqlResult<()> {
        unsafe {
            sql_set_stmt_attr(
                self.as_sys(),
                StatementAttribute::MetadataId,
                metadata_id as usize as Pointer,
                0,
            )
            .into_sql_result("SQLSetStmtAttr")
        }
    }

    /// Enables or disables asynchronous execution for this statement handle. If asynchronous
    /// execution is not enabled on connection level it is disabled by default and everything is
    /// executed synchronously.
    ///
    /// This is equivalent to stetting `SQL_ATTR_ASYNC_ENABLE` in the bare C API.
    ///
    /// See
    /// <https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/executing-statements-odbc>
    fn set_async_enable(&mut self, on: bool) -> SqlResult<()> {
        unsafe {
            sql_set_stmt_attr(
                self.as_sys(),
                StatementAttribute::AsyncEnable,
                on as usize as Pointer,
                0,
            )
            .into_sql_result("SQLSetStmtAttr")
        }
    }

    /// Binds a buffer holding an input parameter to a parameter marker in an SQL statement. This
    /// specialized version takes a constant reference to parameter, but is therefore limited to
    /// binding input parameters. See [`Statement::bind_parameter`] for the version which can bind
    /// input and output parameters.
    ///
    /// See <https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function>.
    ///
    /// # Safety
    ///
    /// * It is up to the caller to ensure the lifetimes of the bound parameters.
    /// * Calling this function may influence other statements that share the APD.
    unsafe fn bind_input_parameter(
        &mut self,
        parameter_number: u16,
        parameter: &(impl HasDataType + CData + ?Sized),
    ) -> SqlResult<()> {
        let parameter_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            ParamType::Input,
            parameter.cdata_type(),
            parameter_type.data_type(),
            parameter_type.column_size(),
            parameter_type.decimal_digits(),
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.value_ptr() as *mut c_void,
            parameter.buffer_length(),
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.indicator_ptr() as *mut isize,
        )
        .into_sql_result("SQLBindParameter")
    }

    /// Binds a buffer holding a single parameter to a parameter marker in an SQL statement. To bind
    /// input parameters using constant references see [`Statement::bind_input_parameter`].
    ///
    /// See <https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function>.
    ///
    /// # Safety
    ///
    /// * It is up to the caller to ensure the lifetimes of the bound parameters.
    /// * Calling this function may influence other statements that share the APD.
    unsafe fn bind_parameter(
        &mut self,
        parameter_number: u16,
        input_output_type: ParamType,
        parameter: &mut (impl CDataMut + HasDataType),
    ) -> SqlResult<()> {
        let parameter_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            input_output_type,
            parameter.cdata_type(),
            parameter_type.data_type(),
            parameter_type.column_size(),
            parameter_type.decimal_digits(),
            parameter.value_ptr() as *mut c_void,
            parameter.buffer_length(),
            parameter.mut_indicator_ptr(),
        )
        .into_sql_result("SQLBindParameter")
    }

    /// Binds an input stream to a parameter marker in an SQL statement. Use this to stream large
    /// values at statement execution time. To bind preallocated constant buffers see
    /// [`Statement::bind_input_parameter`].
    ///
    /// See <https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function>.
    ///
    /// # Safety
    ///
    /// * It is up to the caller to ensure the lifetimes of the bound parameters.
    /// * Calling this function may influence other statements that share the APD.
    unsafe fn bind_delayed_input_parameter(
        &mut self,
        parameter_number: u16,
        parameter: &mut (impl DelayedInput + HasDataType),
    ) -> SqlResult<()> {
        let paramater_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            ParamType::Input,
            parameter.cdata_type(),
            paramater_type.data_type(),
            paramater_type.column_size(),
            paramater_type.decimal_digits(),
            parameter.stream_ptr(),
            0,
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.indicator_ptr() as *mut isize,
        )
        .into_sql_result("SQLBindParameter")
    }

    /// `true` if a given column in a result set is unsigned or not a numeric type, `false`
    /// otherwise.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn is_unsigned_column(&self, column_number: u16) -> SqlResult<bool> {
        unsafe { self.numeric_col_attribute(Desc::Unsigned, column_number) }.map(|out| match out {
            0 => false,
            1 => true,
            _ => panic!("Unsigned column attribute must be either 0 or 1."),
        })
    }

    /// Returns a number identifying the SQL type of the column in the result set.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn col_type(&self, column_number: u16) -> SqlResult<SqlDataType> {
        unsafe { self.numeric_col_attribute(Desc::Type, column_number) }
            .map(|ret| SqlDataType(ret.try_into().unwrap()))
    }

    /// The concise data type. For the datetime and interval data types, this field returns the
    /// concise data type; for example, `TIME` or `INTERVAL_YEAR`.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn col_concise_type(&self, column_number: u16) -> SqlResult<SqlDataType> {
        unsafe { self.numeric_col_attribute(Desc::ConciseType, column_number) }
            .map(|ret| SqlDataType(ret.try_into().unwrap()))
    }

    /// Returns the size in bytes of the columns. For variable sized types the maximum size is
    /// returned, excluding a terminating zero.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn col_octet_length(&self, column_number: u16) -> SqlResult<isize> {
        unsafe { self.numeric_col_attribute(Desc::OctetLength, column_number) }
    }

    /// Maximum number of characters required to display data from the column.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn col_display_size(&self, column_number: u16) -> SqlResult<isize> {
        unsafe { self.numeric_col_attribute(Desc::DisplaySize, column_number) }
    }

    /// Precision of the column.
    ///
    /// Denotes the applicable precision. For data types SQL_TYPE_TIME, SQL_TYPE_TIMESTAMP, and all
    /// the interval data types that represent a time interval, its value is the applicable
    /// precision of the fractional seconds component.
    fn col_precision(&self, column_number: u16) -> SqlResult<isize> {
        unsafe { self.numeric_col_attribute(Desc::Precision, column_number) }
    }

    /// The applicable scale for a numeric data type. For DECIMAL and NUMERIC data types, this is
    /// the defined scale. It is undefined for all other data types.
    fn col_scale(&self, column_number: u16) -> SqlResult<Len> {
        unsafe { self.numeric_col_attribute(Desc::Scale, column_number) }
    }

    /// The column alias, if it applies. If the column alias does not apply, the column name is
    /// returned. If there is no column name or a column alias, an empty string is returned.
    fn col_name(&self, column_number: u16, buffer: &mut Vec<SqlChar>) -> SqlResult<()> {
        // String length in bytes, not characters. Terminating zero is excluded.
        let mut string_length_in_bytes: i16 = 0;
        // Let's utilize all of `buf`s capacity.
        buffer.resize(buffer.capacity(), 0);
        unsafe {
            let mut res = sql_col_attribute(
                self.as_sys(),
                column_number,
                Desc::Name,
                mut_buf_ptr(buffer) as Pointer,
                binary_length(buffer).try_into().unwrap(),
                &mut string_length_in_bytes as *mut i16,
                null_mut(),
            )
            .into_sql_result("SQLColAttribute");

            if res.is_err() {
                return res;
            }

            if is_truncated_bin(buffer, string_length_in_bytes.try_into().unwrap()) {
                // If we could rely on every ODBC driver sticking to the specifcation it would
                // probably best to resize by `string_length_in_bytes / 2 + 1`. Yet e.g. SQLite
                // seems to report the length in characters, so to work with a wide range of DB
                // systems, and since buffers for names are not expected to become super large we
                // ommit the division by two here.
                buffer.resize((string_length_in_bytes + 1).try_into().unwrap(), 0);

                res = sql_col_attribute(
                    self.as_sys(),
                    column_number,
                    Desc::Name,
                    mut_buf_ptr(buffer) as Pointer,
                    binary_length(buffer).try_into().unwrap(),
                    &mut string_length_in_bytes as *mut i16,
                    null_mut(),
                )
                .into_sql_result("SQLColAttribute");
            }
            // Resize buffer to exact string length without terminal zero
            resize_to_fit_without_tz(buffer, string_length_in_bytes.try_into().unwrap());

            res
        }
    }

    /// # Safety
    ///
    /// It is the callers responsibility to ensure that `attribute` refers to a numeric attribute.
    unsafe fn numeric_col_attribute(&self, attribute: Desc, column_number: u16) -> SqlResult<Len> {
        let mut out: Len = 0;
        sql_col_attribute(
            self.as_sys(),
            column_number,
            attribute,
            null_mut(),
            0,
            null_mut(),
            &mut out as *mut Len,
        )
        .into_sql_result("SQLColAttribute")
        .on_success(|| out)
    }

    /// Sets the SQL_DESC_COUNT field of the APD to 0, releasing all parameter buffers set for the
    /// given StatementHandle.
    fn reset_parameters(&mut self) -> SqlResult<()> {
        unsafe {
            SQLFreeStmt(self.as_sys(), FreeStmtOption::ResetParams).into_sql_result("SQLFreeStmt")
        }
    }

    /// Describes parameter marker associated with a prepared SQL statement.
    ///
    /// # Parameters
    ///
    /// * `parameter_number`: Parameter marker number ordered sequentially in increasing parameter
    ///   order, starting at 1.
    fn describe_param(&self, parameter_number: u16) -> SqlResult<ParameterDescription> {
        let mut data_type = SqlDataType::UNKNOWN_TYPE;
        let mut parameter_size = 0;
        let mut decimal_digits = 0;
        let mut nullable = odbc_sys::Nullability::UNKNOWN;
        unsafe {
            SQLDescribeParam(
                self.as_sys(),
                parameter_number,
                &mut data_type,
                &mut parameter_size,
                &mut decimal_digits,
                &mut nullable,
            )
        }
        .into_sql_result("SQLDescribeParam")
        .on_success(|| ParameterDescription {
            data_type: DataType::new(data_type, parameter_size, decimal_digits),
            nullable: Nullability::new(nullable),
        })
    }

    /// Use to check if which additional parameters need data. Should be called after binding
    /// parameters with an indicator set to [`crate::sys::DATA_AT_EXEC`] or a value created with
    /// [`crate::sys::len_data_at_exec`].
    ///
    /// Return value contains a parameter identifier passed to bind parameter as a value pointer.
    fn param_data(&mut self) -> SqlResult<Option<Pointer>> {
        unsafe {
            let mut param_id: Pointer = null_mut();
            // Use cases for `PARAM_DATA_AVAILABLE` and `NO_DATA` not implemented yet.
            match SQLParamData(self.as_sys(), &mut param_id as *mut Pointer) {
                SqlReturn::NEED_DATA => SqlResult::Success(Some(param_id)),
                other => other.into_sql_result("SQLParamData").on_success(|| None),
            }
        }
    }

    /// Executes a columns query using this statement handle.
    fn columns(
        &mut self,
        catalog_name: &SqlText,
        schema_name: &SqlText,
        table_name: &SqlText,
        column_name: &SqlText,
    ) -> SqlResult<()> {
        unsafe {
            sql_columns(
                self.as_sys(),
                catalog_name.ptr(),
                catalog_name.len_char().try_into().unwrap(),
                schema_name.ptr(),
                schema_name.len_char().try_into().unwrap(),
                table_name.ptr(),
                table_name.len_char().try_into().unwrap(),
                column_name.ptr(),
                column_name.len_char().try_into().unwrap(),
            )
            .into_sql_result("SQLColumns")
        }
    }

    /// Returns the list of table, catalog, or schema names, and table types, stored in a specific
    /// data source. The driver returns the information as a result set.
    ///
    /// The catalog, schema and table parameters are search patterns by default unless
    /// [`Self::set_metadata_id`] is called with `true`. In that case they must also not be `None` since
    /// otherwise a NulPointer error is emitted.
    fn tables(
        &mut self,
        catalog_name: &SqlText,
        schema_name: &SqlText,
        table_name: &SqlText,
        table_type: &SqlText,
    ) -> SqlResult<()> {
        unsafe {
            sql_tables(
                self.as_sys(),
                catalog_name.ptr(),
                catalog_name.len_char().try_into().unwrap(),
                schema_name.ptr(),
                schema_name.len_char().try_into().unwrap(),
                table_name.ptr(),
                table_name.len_char().try_into().unwrap(),
                table_type.ptr(),
                table_type.len_char().try_into().unwrap(),
            )
            .into_sql_result("SQLTables")
        }
    }

    /// To put a batch of binary data into the data source at statement execution time. May return
    /// [`SqlResult::NeedData`]
    ///
    /// Panics if batch is empty.
    fn put_binary_batch(&mut self, batch: &[u8]) -> SqlResult<()> {
        // Probably not strictly necessary. MSSQL returns an error than inserting empty batches.
        // Still strikes me as a programming error. Maybe we could also do nothing instead.
        if batch.is_empty() {
            panic!("Attempt to put empty batch into data source.")
        }

        unsafe {
            SQLPutData(
                self.as_sys(),
                batch.as_ptr() as Pointer,
                batch.len().try_into().unwrap(),
            )
            .into_sql_result("SQLPutData")
        }
    }

    /// Number of rows affected by an `UPDATE`, `INSERT`, or `DELETE` statement.
    ///
    /// See:
    ///
    /// <https://docs.microsoft.com/en-us/sql/relational-databases/native-client-odbc-api/sqlrowcount>
    /// <https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlrowcount-function>
    fn row_count(&self) -> SqlResult<isize> {
        let mut ret = 0isize;
        unsafe {
            SQLRowCount(self.as_sys(), &mut ret as *mut isize)
                .into_sql_result("SQLRowCount")
                .on_success(|| ret)
        }
    }

    /// In polling mode can be used instead of repeating the function call. In notification mode
    /// this completes the asynchronous operation. This method panics, in case asynchronous mode is
    /// not enabled. [`SqlResult::NoData`] if no asynchronous operation is in progress, or (specific
    /// to notification mode) the driver manager has not notified the application.
    ///
    /// See: <https://learn.microsoft.com/en-us/sql/odbc/reference/syntax/sqlcompleteasync-function>
    fn complete_async(&mut self, function_name: &'static str) -> SqlResult<SqlResult<()>> {
        let mut ret = SqlReturn::ERROR;
        unsafe {
            // Possible return codes are (according to MS ODBC docs):
            // * INVALID_HANDLE: The handle indicated by HandleType and Handle is not a valid
            //   handle. => Must not happen due self always being a valid statement handle.
            // * ERROR: ret is NULL or asynchronous processing is not enabled on the handle. => ret
            //   is never NULL. User may choose not to enable asynchronous processing though.
            // * NO_DATA: In notification mode, an asynchronous operation is not in progress or the
            //   Driver Manager has not notified the application. In polling mode, an asynchronous
            //   operation is not in progress.
            SQLCompleteAsync(self.handle_type(), self.as_handle(), &mut ret.0 as *mut _)
                .into_sql_result("SQLCompleteAsync")
        }
        .on_success(|| ret.into_sql_result(function_name))
    }
src/handles/connection.rs (line 168)
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
    pub fn allocate_statement(&self) -> SqlResult<StatementImpl<'_>> {
        let mut out = null_mut();
        unsafe {
            SQLAllocHandle(HandleType::Stmt, self.as_handle(), &mut out)
                .into_sql_result("SQLAllocHandle")
                .on_success(|| StatementImpl::new(out as HStmt))
        }
    }

    /// Specify the transaction mode. By default, ODBC transactions are in auto-commit mode (unless
    /// SQLSetConnectAttr and SQLSetConnectOption are not supported, which is unlikely). Switching
    /// from manual-commit mode to auto-commit mode automatically commits any open transaction on
    /// the connection.
    pub fn set_autocommit(&self, enabled: bool) -> SqlResult<()> {
        let val = enabled as u32;
        unsafe {
            sql_set_connect_attr(
                self.handle,
                ConnectionAttribute::AutoCommit,
                val as Pointer,
                0, // will be ignored according to ODBC spec
            )
            .into_sql_result("SQLSetConnectAttr")
        }
    }

    /// To commit a transaction in manual-commit mode.
    pub fn commit(&self) -> SqlResult<()> {
        unsafe {
            SQLEndTran(HandleType::Dbc, self.as_handle(), CompletionType::Commit)
                .into_sql_result("SQLEndTran")
        }
    }

    /// Roll back a transaction in manual-commit mode.
    pub fn rollback(&self) -> SqlResult<()> {
        unsafe {
            SQLEndTran(HandleType::Dbc, self.as_handle(), CompletionType::Rollback)
                .into_sql_result("SQLEndTran")
        }
    }

    /// Fetch the name of the database management system used by the connection and store it into
    /// the provided `buf`.
    pub fn fetch_database_management_system_name(&self, buf: &mut Vec<SqlChar>) -> SqlResult<()> {
        // String length in bytes, not characters. Terminating zero is excluded.
        let mut string_length_in_bytes: i16 = 0;
        // Let's utilize all of `buf`s capacity.
        buf.resize(buf.capacity(), 0);

        unsafe {
            let mut res = sql_get_info(
                self.handle,
                InfoType::DbmsName,
                mut_buf_ptr(buf) as Pointer,
                binary_length(buf).try_into().unwrap(),
                &mut string_length_in_bytes as *mut i16,
            )
            .into_sql_result("SQLGetInfo");

            if res.is_err() {
                return res;
            }

            // Call has been a success but let's check if the buffer had been large enough.
            if is_truncated_bin(buf, string_length_in_bytes.try_into().unwrap()) {
                // It seems we must try again with a large enough buffer.
                resize_to_fit_with_tz(buf, string_length_in_bytes.try_into().unwrap());
                res = sql_get_info(
                    self.handle,
                    InfoType::DbmsName,
                    mut_buf_ptr(buf) as Pointer,
                    binary_length(buf).try_into().unwrap(),
                    &mut string_length_in_bytes as *mut i16,
                )
                .into_sql_result("SQLGetInfo");

                if res.is_err() {
                    return res;
                }
            }

            // Resize buffer to exact string length without terminal zero
            resize_to_fit_without_tz(buf, string_length_in_bytes.try_into().unwrap());
            res
        }
    }

    fn info_u16(&self, info_type: InfoType) -> SqlResult<u16> {
        unsafe {
            let mut value = 0u16;
            sql_get_info(
                self.handle,
                info_type,
                &mut value as *mut u16 as Pointer,
                // Buffer length should not be required in this case, according to the ODBC
                // documentation at https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlgetinfo-function?view=sql-server-ver15#arguments
                // However, in practice some drivers (such as Microsoft Access) require it to be
                // specified explicitly here, otherwise they return an error without diagnostics.
                size_of::<*mut u16>() as i16,
                null_mut(),
            )
            .into_sql_result("SQLGetInfo")
            .on_success(|| value)
        }
    }

    /// Maximum length of catalog names.
    pub fn max_catalog_name_len(&self) -> SqlResult<u16> {
        self.info_u16(InfoType::MaxCatalogNameLen)
    }

    /// Maximum length of schema names.
    pub fn max_schema_name_len(&self) -> SqlResult<u16> {
        self.info_u16(InfoType::MaxSchemaNameLen)
    }

    /// Maximum length of table names.
    pub fn max_table_name_len(&self) -> SqlResult<u16> {
        self.info_u16(InfoType::MaxTableNameLen)
    }

    /// Maximum length of column names.
    pub fn max_column_name_len(&self) -> SqlResult<u16> {
        self.info_u16(InfoType::MaxColumnNameLen)
    }

    /// Fetch the name of the current catalog being used by the connection and store it into the
    /// provided `buf`.
    pub fn fetch_current_catalog(&self, buffer: &mut Vec<SqlChar>) -> SqlResult<()> {
        // String length in bytes, not characters. Terminating zero is excluded.
        let mut string_length_in_bytes: i32 = 0;
        // Let's utilize all of `buf`s capacity.
        buffer.resize(buffer.capacity(), 0);

        unsafe {
            let mut res = sql_get_connect_attr(
                self.handle,
                ConnectionAttribute::CurrentCatalog,
                mut_buf_ptr(buffer) as Pointer,
                binary_length(buffer).try_into().unwrap(),
                &mut string_length_in_bytes as *mut i32,
            )
            .into_sql_result("SQLGetConnectAttr");

            if res.is_err() {
                return res;
            }

            if is_truncated_bin(buffer, string_length_in_bytes.try_into().unwrap()) {
                resize_to_fit_with_tz(buffer, string_length_in_bytes.try_into().unwrap());
                res = sql_get_connect_attr(
                    self.handle,
                    ConnectionAttribute::CurrentCatalog,
                    mut_buf_ptr(buffer) as Pointer,
                    binary_length(buffer).try_into().unwrap(),
                    &mut string_length_in_bytes as *mut i32,
                )
                .into_sql_result("SQLGetConnectAttr");
            }

            if res.is_err() {
                return res;
            }

            // Resize buffer to exact string length without terminal zero
            resize_to_fit_without_tz(buffer, string_length_in_bytes.try_into().unwrap());
            res
        }
    }

    /// Indicates the state of the connection. If `true` the connection has been lost. If `false`,
    /// the connection is still active.
    pub fn is_dead(&self) -> SqlResult<bool> {
        unsafe {
            self.attribute_u32(ConnectionAttribute::ConnectionDead)
                .map(|v| match v {
                    0 => false,
                    1 => true,
                    other => panic!("Unexpected result value from SQLGetConnectAttr: {}", other),
                })
        }
    }

    /// # Safety
    ///
    /// Caller must ensure connection attribute is numeric.
    unsafe fn attribute_u32(&self, attribute: ConnectionAttribute) -> SqlResult<u32> {
        let mut out: u32 = 0;
        sql_get_connect_attr(
            self.handle,
            attribute,
            &mut out as *mut u32 as *mut c_void,
            IS_UINTEGER,
            null_mut(),
        )
        .into_sql_result("SQLGetConnectAttr")
        .on_success(|| out)
    }
src/cursor.rs (line 629)
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
fn error_handling_for_fetch(
    result: SqlResult<()>,
    mut stmt: StatementRef,
    error_for_truncation: bool,
) -> Result<bool, Error> {
    let has_row = result
        .on_success(|| true)
        .into_result_with(&stmt.as_stmt_ref(), error_for_truncation, Some(false), None)
        // Oracles ODBC driver does not support 64Bit integers. Furthermore, it does not
        // tell the it to the user than binding parameters, but rather now then we fetch
        // results. The error code retruned is `HY004` rather then `HY003` which should
        // be used to indicate invalid buffer types.
        .provide_context_for_diagnostic(|record, function| {
            if record.state == State::INVALID_SQL_DATA_TYPE {
                Error::OracleOdbcDriverDoesNotSupport64Bit(record)
            } else {
                Error::Diagnostics { record, function }
            }
        })?;
    Ok(has_row)
}
src/handles/environment.rs (lines 106-108)
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    pub fn new() -> SqlResult<Self> {
        // After running a lot of unit tests in parallel on both linux and windows architectures and
        // never seeing a race condition related to this I deem this save. In the past I feared
        // concurrent construction of multiple Environments might race on shared state. Mostly due
        // to <https://github.com/Koka/odbc-rs/issues/29> and
        // <http://old.vk.pp.ru/docs/sybase-any/interfaces/00000034.htm>. Since however I since
        // however official sources imply it is ok for an application to have multiple environments
        // and I did not get it to race ever on my machine.
        unsafe {
            let mut handle = null_mut();
            let result: SqlResult<()> = SQLAllocHandle(HandleType::Env, null_mut(), &mut handle)
                .into_sql_result("SQLAllocHandle");
            result.on_success(|| Environment {
                handle: handle as HEnv,
            })
        }
    }

    /// Declares which Version of the ODBC API we want to use. This is the first thing that should
    /// be done with any ODBC environment.
    pub fn declare_version(&self, version: AttrOdbcVersion) -> SqlResult<()> {
        unsafe {
            SQLSetEnvAttr(
                self.handle,
                EnvironmentAttribute::OdbcVersion,
                version.into(),
                0,
            )
            .into_sql_result("SQLSetEnvAttr")
        }
    }

    /// Allocate a new connection handle. The `Connection` must not outlive the `Environment`.
    pub fn allocate_connection(&self) -> SqlResult<Connection<'_>> {
        let mut handle = null_mut();
        unsafe {
            SQLAllocHandle(HandleType::Dbc, self.as_handle(), &mut handle)
                .into_sql_result("SQLAllocHandle")
                .on_success(|| Connection::new(handle as HDbc))
        }
    }

    /// Provides access to the raw ODBC environment handle.
    pub fn as_raw(&self) -> HEnv {
        self.handle
    }

    /// List drivers descriptions and driver attribute keywords. Returns `NoData` to indicate the
    /// end of the list.
    ///
    /// # Safety
    ///
    /// Callers need to make sure only one thread is iterating over driver information at a time.
    /// Method changes environment state. This method would be safe to call via an exclusive `&mut`
    /// reference, yet that would restrict usecases. E.g. requesting information would only be
    /// possible before connections borrow a reference.
    ///
    /// # Parameters
    ///
    /// * `direction`: Determines whether the Driver Manager fetches the next driver in the list
    ///   ([`FetchOrientation::Next`]) or whether the search starts from the beginning of the list
    ///   ([`FetchOrientation::First`]).
    /// * `buffer_description`: In case `true` is returned this buffer is filled with the
    ///   description of the driver.
    /// * `buffer_attributes`: In case `true` is returned this buffer is filled with a list of
    ///   key value attributes. E.g.: `"key1=value1\0key2=value2\0\0"`.
    ///
    ///  Use [`Environment::drivers_buffer_len`] to determine buffer lengths.
    ///
    /// See [SQLDrivers][1]
    ///
    /// [1]: https://docs.microsoft.com/sql/odbc/reference/syntax/sqldrivers-function
    pub unsafe fn drivers_buffer_fill(
        &self,
        direction: FetchOrientation,
        buffer_description: &mut [SqlChar],
        buffer_attributes: &mut [SqlChar],
    ) -> SqlResult<()> {
        sql_drivers(
            self.handle,
            direction,
            buffer_description.as_mut_ptr(),
            buffer_description.len().try_into().unwrap(),
            null_mut(),
            buffer_attributes.as_mut_ptr(),
            buffer_attributes.len().try_into().unwrap(),
            null_mut(),
        )
        .into_sql_result("SQLDrivers")
    }

    /// Use together with [`Environment::drivers_buffer_fill`] to list drivers descriptions and
    /// driver attribute keywords.
    ///
    /// # Safety
    ///
    /// Callers need to make sure only one thread is iterating over driver information at a time.
    /// Method changes environment state. This method would be safe to call via an exclusive `&mut`
    /// reference, yet that would restrict usecases. E.g. requesting information would only be
    /// possible before connections borrow a reference.
    ///
    /// # Parameters
    ///
    /// * `direction`: Determines whether the Driver Manager fetches the next driver in the list
    ///   ([`FetchOrientation::Next`]) or whether the search starts from the beginning of the list
    ///   ([`FetchOrientation::First`]).
    ///
    /// # Return
    ///
    /// `(driver description length, attribute length)`. Length is in characters minus terminating
    /// terminating zero.
    ///
    /// See [SQLDrivers][1]
    ///
    /// [1]: https://docs.microsoft.com/sql/odbc/reference/syntax/sqldrivers-function
    pub unsafe fn drivers_buffer_len(&self, direction: FetchOrientation) -> SqlResult<(i16, i16)> {
        // Lengths in characters minus terminating zero
        let mut length_description: i16 = 0;
        let mut length_attributes: i16 = 0;
        // Determine required buffer size
        sql_drivers(
            self.handle,
            direction,
            null_mut(),
            0,
            &mut length_description,
            null_mut(),
            0,
            &mut length_attributes,
        )
        .into_sql_result("SQLDrivers")
        .on_success(|| (length_description, length_attributes))
    }

    /// Use together with [`Environment::data_source_buffer_fill`] to list drivers descriptions and
    /// driver attribute keywords.
    ///
    /// # Safety
    ///
    /// Callers need to make sure only one thread is iterating over data source information at a
    /// time. Method changes environment state. This method would be safe to call via an exclusive
    /// `&mut` reference, yet that would restrict usecases. E.g. requesting information would only
    /// be possible before connections borrow a reference.
    ///
    /// # Parameters
    ///
    /// * `direction`: Determines whether the Driver Manager fetches the next driver in the list
    ///   ([`FetchOrientation::Next`]) or whether the search starts from the beginning of the list
    ///   ([`FetchOrientation::First`], [`FetchOrientation::FirstSystem`],
    ///   [`FetchOrientation::FirstUser`]).
    ///
    /// # Return
    ///
    /// `(server name length,  description length)`. Length is in characters minus terminating zero.
    pub unsafe fn data_source_buffer_len(
        &self,
        direction: FetchOrientation,
    ) -> SqlResult<(i16, i16)> {
        // Lengths in characters minus terminating zero
        let mut length_name: i16 = 0;
        let mut length_description: i16 = 0;
        // Determine required buffer size
        sql_data_sources(
            self.handle,
            direction,
            null_mut(),
            0,
            &mut length_name,
            null_mut(),
            0,
            &mut length_description,
        )
        .into_sql_result("SQLDataSources")
        .on_success(|| (length_name, length_description))
    }
src/execute.rs (line 107)
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
pub unsafe fn execute<S>(
    mut statement: S,
    query: Option<&SqlText<'_>>,
) -> Result<Option<CursorImpl<S>>, Error>
where
    S: AsStatementRef,
{
    let mut stmt = statement.as_stmt_ref();
    let result = if let Some(sql) = query {
        // We execute an unprepared "one shot query"
        stmt.exec_direct(sql)
    } else {
        // We execute a prepared query
        stmt.execute()
    };

    // If delayed parameters (e.g. input streams) are bound we might need to put data in order to
    // execute.
    let need_data =
        result
            .on_success(|| false)
            .into_result_with(&stmt, false, Some(false), Some(true))?;

    if need_data {
        // Check if any delayed parameters have been bound which stream data to the database at
        // statement execution time. Loops over each bound stream.
        while let Some(blob_ptr) = stmt.param_data().into_result(&stmt)? {
            // The safe interfaces currently exclusively bind pointers to `Blob` trait objects
            let blob_ptr: *mut &mut dyn Blob = transmute(blob_ptr);
            let blob_ref = &mut *blob_ptr;
            // Loop over all batches within each blob
            while let Some(batch) = blob_ref.next_batch().map_err(Error::FailedReadingInput)? {
                stmt.put_binary_batch(batch).into_result(&stmt)?;
            }
        }
    }

    // Check if a result set has been created.
    if stmt.num_result_cols().into_result(&stmt)? == 0 {
        Ok(None)
    } else {
        // Safe: `statement` is in cursor state.
        let cursor = CursorImpl::new(statement);
        Ok(Some(cursor))
    }
}

/// # Safety
///
/// * Execute may dereference pointers to bound parameters, so these must guaranteed to be valid
///   then calling this function.
/// * Furthermore all bound delayed parameters must be of type `*mut &mut dyn Blob`.
pub async unsafe fn execute_polling<S>(
    mut statement: S,
    query: Option<&SqlText<'_>>,
    mut sleep: impl Sleep,
) -> Result<Option<CursorPolling<S>>, Error>
where
    S: AsStatementRef,
{
    let mut stmt = statement.as_stmt_ref();
    let result = if let Some(sql) = query {
        // We execute an unprepared "one shot query"
        wait_for(|| stmt.exec_direct(sql), &mut sleep).await
    } else {
        // We execute a prepared query
        wait_for(|| stmt.execute(), &mut sleep).await
    };

    // If delayed parameters (e.g. input streams) are bound we might need to put data in order to
    // execute.
    let need_data =
        result
            .on_success(|| false)
            .into_result_with(&stmt, false, Some(false), Some(true))?;

    if need_data {
        // Check if any delayed parameters have been bound which stream data to the database at
        // statement execution time. Loops over each bound stream.
        while let Some(blob_ptr) = stmt.param_data().into_result(&stmt)? {
            // The safe interfaces currently exclusively bind pointers to `Blob` trait objects
            let blob_ptr: *mut &mut dyn Blob = transmute(blob_ptr);
            let blob_ref = &mut *blob_ptr;
            // Loop over all batches within each blob
            while let Some(batch) = blob_ref.next_batch().map_err(Error::FailedReadingInput)? {
                let result = wait_for(|| stmt.put_binary_batch(batch), &mut sleep).await;
                result.into_result(&stmt)?;
            }
        }
    }

    // Check if a result set has been created.
    let num_result_cols = wait_for(|| stmt.num_result_cols(), &mut sleep)
        .await
        .into_result(&stmt)?;
    if num_result_cols == 0 {
        Ok(None)
    } else {
        // Safe: `statement` is in cursor state.
        let cursor = CursorPolling::new(statement);
        Ok(Some(cursor))
    }
}

True if variant is SqlResult::Error.

Examples found in repository?
src/handles/statement.rs (line 280)
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
    fn describe_col(
        &self,
        column_number: u16,
        column_description: &mut ColumnDescription,
    ) -> SqlResult<()> {
        let name = &mut column_description.name;
        // Use maximum available capacity.
        name.resize(name.capacity(), 0);
        let mut name_length: i16 = 0;
        let mut data_type = SqlDataType::UNKNOWN_TYPE;
        let mut column_size = 0;
        let mut decimal_digits = 0;
        let mut nullable = odbc_sys::Nullability::UNKNOWN;

        let res = unsafe {
            sql_describe_col(
                self.as_sys(),
                column_number,
                mut_buf_ptr(name),
                clamp_small_int(name.len()),
                &mut name_length,
                &mut data_type,
                &mut column_size,
                &mut decimal_digits,
                &mut nullable,
            )
            .into_sql_result("SQLDescribeCol")
        };

        if res.is_err() {
            return res;
        }

        column_description.nullability = Nullability::new(nullable);

        if name_length + 1 > clamp_small_int(name.len()) {
            // Buffer is to small to hold name, retry with larger buffer
            name.resize(name_length as usize + 1, 0);
            self.describe_col(column_number, column_description)
        } else {
            name.resize(name_length as usize, 0);
            column_description.data_type = DataType::new(data_type, column_size, decimal_digits);
            res
        }
    }

    /// Executes a statement, using the current values of the parameter marker variables if any
    /// parameters exist in the statement. SQLExecDirect is the fastest way to submit an SQL
    /// statement for one-time execution.
    ///
    /// # Safety
    ///
    /// While `self` as always guaranteed to be a valid allocated handle, this function may
    /// dereference bound parameters. It is the callers responsibility to ensure these are still
    /// valid. One strategy is to reset potentially invalid parameters right before the call using
    /// `reset_parameters`.
    ///
    /// # Return
    ///
    /// * [`SqlResult::NeedData`] if execution requires additional data from delayed parameters.
    /// * [`SqlResult::NoData`] if a searched update or delete statement did not affect any rows at
    ///   the data source.
    unsafe fn exec_direct(&mut self, statement: &SqlText) -> SqlResult<()> {
        sql_exec_direc(
            self.as_sys(),
            statement.ptr(),
            statement.len_char().try_into().unwrap(),
        )
        .into_sql_result("SQLExecDirect")
    }

    /// Close an open cursor.
    fn close_cursor(&mut self) -> SqlResult<()> {
        unsafe { SQLCloseCursor(self.as_sys()) }.into_sql_result("SQLCloseCursor")
    }

    /// Send an SQL statement to the data source for preparation. The application can include one or
    /// more parameter markers in the SQL statement. To include a parameter marker, the application
    /// embeds a question mark (?) into the SQL string at the appropriate position.
    fn prepare(&mut self, statement: &SqlText) -> SqlResult<()> {
        unsafe {
            sql_prepare(
                self.as_sys(),
                statement.ptr(),
                statement.len_char().try_into().unwrap(),
            )
        }
        .into_sql_result("SQLPrepare")
    }

    /// Executes a statement prepared by `prepare`. After the application processes or discards the
    /// results from a call to `execute`, the application can call SQLExecute again with new
    /// parameter values.
    ///
    /// # Safety
    ///
    /// While `self` as always guaranteed to be a valid allocated handle, this function may
    /// dereference bound parameters. It is the callers responsibility to ensure these are still
    /// valid. One strategy is to reset potentially invalid parameters right before the call using
    /// `reset_parameters`.
    ///
    /// # Return
    ///
    /// * [`SqlResult::NeedData`] if execution requires additional data from delayed parameters.
    /// * [`SqlResult::NoData`] if a searched update or delete statement did not affect any rows at
    ///   the data source.
    unsafe fn execute(&mut self) -> SqlResult<()> {
        SQLExecute(self.as_sys()).into_sql_result("SQLExecute")
    }

    /// Number of columns in result set.
    ///
    /// Can also be used to check, whether or not a result set has been created at all.
    fn num_result_cols(&self) -> SqlResult<i16> {
        let mut out: i16 = 0;
        unsafe { SQLNumResultCols(self.as_sys(), &mut out) }
            .into_sql_result("SQLNumResultCols")
            .on_success(|| out)
    }

    /// Number of placeholders of a prepared query.
    fn num_params(&self) -> SqlResult<u16> {
        let mut out: i16 = 0;
        unsafe { SQLNumParams(self.as_sys(), &mut out) }
            .into_sql_result("SQLNumParams")
            .on_success(|| out.try_into().unwrap())
    }

    /// Sets the batch size for bulk cursors, if retrieving many rows at once.
    ///
    /// # Safety
    ///
    /// It is the callers responsibility to ensure that buffers bound using `bind_col` can hold the
    /// specified amount of rows.
    unsafe fn set_row_array_size(&mut self, size: usize) -> SqlResult<()> {
        assert!(size > 0);
        sql_set_stmt_attr(
            self.as_sys(),
            StatementAttribute::RowArraySize,
            size as Pointer,
            0,
        )
        .into_sql_result("SQLSetStmtAttr")
    }

    /// Specifies the number of values for each parameter. If it is greater than 1, the data and
    /// indicator buffers of the statement point to arrays. The cardinality of each array is equal
    /// to the value of this field.
    ///
    /// # Safety
    ///
    /// The bound buffers must at least hold the number of elements specified in this call then the
    /// statement is executed.
    unsafe fn set_paramset_size(&mut self, size: usize) -> SqlResult<()> {
        assert!(size > 0);
        sql_set_stmt_attr(
            self.as_sys(),
            StatementAttribute::ParamsetSize,
            size as Pointer,
            0,
        )
        .into_sql_result("SQLSetStmtAttr")
    }

    /// Sets the binding type to columnar binding for batch cursors.
    ///
    /// Any Positive number indicates a row wise binding with that row length. `0` indicates a
    /// columnar binding.
    ///
    /// # Safety
    ///
    /// It is the callers responsibility to ensure that the bound buffers match the memory layout
    /// specified by this function.
    unsafe fn set_row_bind_type(&mut self, row_size: usize) -> SqlResult<()> {
        sql_set_stmt_attr(
            self.as_sys(),
            StatementAttribute::RowBindType,
            row_size as Pointer,
            0,
        )
        .into_sql_result("SQLSetStmtAttr")
    }

    fn set_metadata_id(&mut self, metadata_id: bool) -> SqlResult<()> {
        unsafe {
            sql_set_stmt_attr(
                self.as_sys(),
                StatementAttribute::MetadataId,
                metadata_id as usize as Pointer,
                0,
            )
            .into_sql_result("SQLSetStmtAttr")
        }
    }

    /// Enables or disables asynchronous execution for this statement handle. If asynchronous
    /// execution is not enabled on connection level it is disabled by default and everything is
    /// executed synchronously.
    ///
    /// This is equivalent to stetting `SQL_ATTR_ASYNC_ENABLE` in the bare C API.
    ///
    /// See
    /// <https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/executing-statements-odbc>
    fn set_async_enable(&mut self, on: bool) -> SqlResult<()> {
        unsafe {
            sql_set_stmt_attr(
                self.as_sys(),
                StatementAttribute::AsyncEnable,
                on as usize as Pointer,
                0,
            )
            .into_sql_result("SQLSetStmtAttr")
        }
    }

    /// Binds a buffer holding an input parameter to a parameter marker in an SQL statement. This
    /// specialized version takes a constant reference to parameter, but is therefore limited to
    /// binding input parameters. See [`Statement::bind_parameter`] for the version which can bind
    /// input and output parameters.
    ///
    /// See <https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function>.
    ///
    /// # Safety
    ///
    /// * It is up to the caller to ensure the lifetimes of the bound parameters.
    /// * Calling this function may influence other statements that share the APD.
    unsafe fn bind_input_parameter(
        &mut self,
        parameter_number: u16,
        parameter: &(impl HasDataType + CData + ?Sized),
    ) -> SqlResult<()> {
        let parameter_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            ParamType::Input,
            parameter.cdata_type(),
            parameter_type.data_type(),
            parameter_type.column_size(),
            parameter_type.decimal_digits(),
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.value_ptr() as *mut c_void,
            parameter.buffer_length(),
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.indicator_ptr() as *mut isize,
        )
        .into_sql_result("SQLBindParameter")
    }

    /// Binds a buffer holding a single parameter to a parameter marker in an SQL statement. To bind
    /// input parameters using constant references see [`Statement::bind_input_parameter`].
    ///
    /// See <https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function>.
    ///
    /// # Safety
    ///
    /// * It is up to the caller to ensure the lifetimes of the bound parameters.
    /// * Calling this function may influence other statements that share the APD.
    unsafe fn bind_parameter(
        &mut self,
        parameter_number: u16,
        input_output_type: ParamType,
        parameter: &mut (impl CDataMut + HasDataType),
    ) -> SqlResult<()> {
        let parameter_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            input_output_type,
            parameter.cdata_type(),
            parameter_type.data_type(),
            parameter_type.column_size(),
            parameter_type.decimal_digits(),
            parameter.value_ptr() as *mut c_void,
            parameter.buffer_length(),
            parameter.mut_indicator_ptr(),
        )
        .into_sql_result("SQLBindParameter")
    }

    /// Binds an input stream to a parameter marker in an SQL statement. Use this to stream large
    /// values at statement execution time. To bind preallocated constant buffers see
    /// [`Statement::bind_input_parameter`].
    ///
    /// See <https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function>.
    ///
    /// # Safety
    ///
    /// * It is up to the caller to ensure the lifetimes of the bound parameters.
    /// * Calling this function may influence other statements that share the APD.
    unsafe fn bind_delayed_input_parameter(
        &mut self,
        parameter_number: u16,
        parameter: &mut (impl DelayedInput + HasDataType),
    ) -> SqlResult<()> {
        let paramater_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            ParamType::Input,
            parameter.cdata_type(),
            paramater_type.data_type(),
            paramater_type.column_size(),
            paramater_type.decimal_digits(),
            parameter.stream_ptr(),
            0,
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.indicator_ptr() as *mut isize,
        )
        .into_sql_result("SQLBindParameter")
    }

    /// `true` if a given column in a result set is unsigned or not a numeric type, `false`
    /// otherwise.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn is_unsigned_column(&self, column_number: u16) -> SqlResult<bool> {
        unsafe { self.numeric_col_attribute(Desc::Unsigned, column_number) }.map(|out| match out {
            0 => false,
            1 => true,
            _ => panic!("Unsigned column attribute must be either 0 or 1."),
        })
    }

    /// Returns a number identifying the SQL type of the column in the result set.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn col_type(&self, column_number: u16) -> SqlResult<SqlDataType> {
        unsafe { self.numeric_col_attribute(Desc::Type, column_number) }
            .map(|ret| SqlDataType(ret.try_into().unwrap()))
    }

    /// The concise data type. For the datetime and interval data types, this field returns the
    /// concise data type; for example, `TIME` or `INTERVAL_YEAR`.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn col_concise_type(&self, column_number: u16) -> SqlResult<SqlDataType> {
        unsafe { self.numeric_col_attribute(Desc::ConciseType, column_number) }
            .map(|ret| SqlDataType(ret.try_into().unwrap()))
    }

    /// Returns the size in bytes of the columns. For variable sized types the maximum size is
    /// returned, excluding a terminating zero.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn col_octet_length(&self, column_number: u16) -> SqlResult<isize> {
        unsafe { self.numeric_col_attribute(Desc::OctetLength, column_number) }
    }

    /// Maximum number of characters required to display data from the column.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn col_display_size(&self, column_number: u16) -> SqlResult<isize> {
        unsafe { self.numeric_col_attribute(Desc::DisplaySize, column_number) }
    }

    /// Precision of the column.
    ///
    /// Denotes the applicable precision. For data types SQL_TYPE_TIME, SQL_TYPE_TIMESTAMP, and all
    /// the interval data types that represent a time interval, its value is the applicable
    /// precision of the fractional seconds component.
    fn col_precision(&self, column_number: u16) -> SqlResult<isize> {
        unsafe { self.numeric_col_attribute(Desc::Precision, column_number) }
    }

    /// The applicable scale for a numeric data type. For DECIMAL and NUMERIC data types, this is
    /// the defined scale. It is undefined for all other data types.
    fn col_scale(&self, column_number: u16) -> SqlResult<Len> {
        unsafe { self.numeric_col_attribute(Desc::Scale, column_number) }
    }

    /// The column alias, if it applies. If the column alias does not apply, the column name is
    /// returned. If there is no column name or a column alias, an empty string is returned.
    fn col_name(&self, column_number: u16, buffer: &mut Vec<SqlChar>) -> SqlResult<()> {
        // String length in bytes, not characters. Terminating zero is excluded.
        let mut string_length_in_bytes: i16 = 0;
        // Let's utilize all of `buf`s capacity.
        buffer.resize(buffer.capacity(), 0);
        unsafe {
            let mut res = sql_col_attribute(
                self.as_sys(),
                column_number,
                Desc::Name,
                mut_buf_ptr(buffer) as Pointer,
                binary_length(buffer).try_into().unwrap(),
                &mut string_length_in_bytes as *mut i16,
                null_mut(),
            )
            .into_sql_result("SQLColAttribute");

            if res.is_err() {
                return res;
            }

            if is_truncated_bin(buffer, string_length_in_bytes.try_into().unwrap()) {
                // If we could rely on every ODBC driver sticking to the specifcation it would
                // probably best to resize by `string_length_in_bytes / 2 + 1`. Yet e.g. SQLite
                // seems to report the length in characters, so to work with a wide range of DB
                // systems, and since buffers for names are not expected to become super large we
                // ommit the division by two here.
                buffer.resize((string_length_in_bytes + 1).try_into().unwrap(), 0);

                res = sql_col_attribute(
                    self.as_sys(),
                    column_number,
                    Desc::Name,
                    mut_buf_ptr(buffer) as Pointer,
                    binary_length(buffer).try_into().unwrap(),
                    &mut string_length_in_bytes as *mut i16,
                    null_mut(),
                )
                .into_sql_result("SQLColAttribute");
            }
            // Resize buffer to exact string length without terminal zero
            resize_to_fit_without_tz(buffer, string_length_in_bytes.try_into().unwrap());

            res
        }
    }
More examples
Hide additional examples
src/handles/connection.rs (line 223)
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    pub fn fetch_database_management_system_name(&self, buf: &mut Vec<SqlChar>) -> SqlResult<()> {
        // String length in bytes, not characters. Terminating zero is excluded.
        let mut string_length_in_bytes: i16 = 0;
        // Let's utilize all of `buf`s capacity.
        buf.resize(buf.capacity(), 0);

        unsafe {
            let mut res = sql_get_info(
                self.handle,
                InfoType::DbmsName,
                mut_buf_ptr(buf) as Pointer,
                binary_length(buf).try_into().unwrap(),
                &mut string_length_in_bytes as *mut i16,
            )
            .into_sql_result("SQLGetInfo");

            if res.is_err() {
                return res;
            }

            // Call has been a success but let's check if the buffer had been large enough.
            if is_truncated_bin(buf, string_length_in_bytes.try_into().unwrap()) {
                // It seems we must try again with a large enough buffer.
                resize_to_fit_with_tz(buf, string_length_in_bytes.try_into().unwrap());
                res = sql_get_info(
                    self.handle,
                    InfoType::DbmsName,
                    mut_buf_ptr(buf) as Pointer,
                    binary_length(buf).try_into().unwrap(),
                    &mut string_length_in_bytes as *mut i16,
                )
                .into_sql_result("SQLGetInfo");

                if res.is_err() {
                    return res;
                }
            }

            // Resize buffer to exact string length without terminal zero
            resize_to_fit_without_tz(buf, string_length_in_bytes.try_into().unwrap());
            res
        }
    }

    fn info_u16(&self, info_type: InfoType) -> SqlResult<u16> {
        unsafe {
            let mut value = 0u16;
            sql_get_info(
                self.handle,
                info_type,
                &mut value as *mut u16 as Pointer,
                // Buffer length should not be required in this case, according to the ODBC
                // documentation at https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlgetinfo-function?view=sql-server-ver15#arguments
                // However, in practice some drivers (such as Microsoft Access) require it to be
                // specified explicitly here, otherwise they return an error without diagnostics.
                size_of::<*mut u16>() as i16,
                null_mut(),
            )
            .into_sql_result("SQLGetInfo")
            .on_success(|| value)
        }
    }

    /// Maximum length of catalog names.
    pub fn max_catalog_name_len(&self) -> SqlResult<u16> {
        self.info_u16(InfoType::MaxCatalogNameLen)
    }

    /// Maximum length of schema names.
    pub fn max_schema_name_len(&self) -> SqlResult<u16> {
        self.info_u16(InfoType::MaxSchemaNameLen)
    }

    /// Maximum length of table names.
    pub fn max_table_name_len(&self) -> SqlResult<u16> {
        self.info_u16(InfoType::MaxTableNameLen)
    }

    /// Maximum length of column names.
    pub fn max_column_name_len(&self) -> SqlResult<u16> {
        self.info_u16(InfoType::MaxColumnNameLen)
    }

    /// Fetch the name of the current catalog being used by the connection and store it into the
    /// provided `buf`.
    pub fn fetch_current_catalog(&self, buffer: &mut Vec<SqlChar>) -> SqlResult<()> {
        // String length in bytes, not characters. Terminating zero is excluded.
        let mut string_length_in_bytes: i32 = 0;
        // Let's utilize all of `buf`s capacity.
        buffer.resize(buffer.capacity(), 0);

        unsafe {
            let mut res = sql_get_connect_attr(
                self.handle,
                ConnectionAttribute::CurrentCatalog,
                mut_buf_ptr(buffer) as Pointer,
                binary_length(buffer).try_into().unwrap(),
                &mut string_length_in_bytes as *mut i32,
            )
            .into_sql_result("SQLGetConnectAttr");

            if res.is_err() {
                return res;
            }

            if is_truncated_bin(buffer, string_length_in_bytes.try_into().unwrap()) {
                resize_to_fit_with_tz(buffer, string_length_in_bytes.try_into().unwrap());
                res = sql_get_connect_attr(
                    self.handle,
                    ConnectionAttribute::CurrentCatalog,
                    mut_buf_ptr(buffer) as Pointer,
                    binary_length(buffer).try_into().unwrap(),
                    &mut string_length_in_bytes as *mut i32,
                )
                .into_sql_result("SQLGetConnectAttr");
            }

            if res.is_err() {
                return res;
            }

            // Resize buffer to exact string length without terminal zero
            resize_to_fit_without_tz(buffer, string_length_in_bytes.try_into().unwrap());
            res
        }
    }

Applies f to any value wrapped in Success or SuccessWithInfo.

Examples found in repository?
src/handles/sql_result.rs (line 34)
30
31
32
33
34
35
    pub fn on_success<F, T>(self, f: F) -> SqlResult<T>
    where
        F: FnOnce() -> T,
    {
        self.map(|()| f())
    }
More examples
Hide additional examples
src/error.rs (line 190)
188
189
190
191
192
    pub fn into_result_option(self, handle: &impl Diagnostics) -> Result<Option<T>, Error> {
        let error_for_truncation = false;
        self.map(Some)
            .into_result_with(handle, error_for_truncation, Some(None), None)
    }
src/handles/statement.rs (lines 568-572)
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
    fn is_unsigned_column(&self, column_number: u16) -> SqlResult<bool> {
        unsafe { self.numeric_col_attribute(Desc::Unsigned, column_number) }.map(|out| match out {
            0 => false,
            1 => true,
            _ => panic!("Unsigned column attribute must be either 0 or 1."),
        })
    }

    /// Returns a number identifying the SQL type of the column in the result set.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn col_type(&self, column_number: u16) -> SqlResult<SqlDataType> {
        unsafe { self.numeric_col_attribute(Desc::Type, column_number) }
            .map(|ret| SqlDataType(ret.try_into().unwrap()))
    }

    /// The concise data type. For the datetime and interval data types, this field returns the
    /// concise data type; for example, `TIME` or `INTERVAL_YEAR`.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn col_concise_type(&self, column_number: u16) -> SqlResult<SqlDataType> {
        unsafe { self.numeric_col_attribute(Desc::ConciseType, column_number) }
            .map(|ret| SqlDataType(ret.try_into().unwrap()))
    }
src/handles/connection.rs (line 123)
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
    pub fn connect_with_connection_string(&mut self, connection_string: &SqlText) -> SqlResult<()> {
        unsafe {
            let parent_window = null_mut();
            let mut completed_connection_string = OutputStringBuffer::empty();

            self.driver_connect(
                connection_string,
                parent_window,
                &mut completed_connection_string,
                DriverConnectOption::NoPrompt,
            )
            // Since we did pass NoPrompt we know the user can not abort the prompt.
            .map(|_connection_string_is_complete| ())
        }
    }

    /// An alternative to `connect` for connecting with a connection string. Allows for completing
    /// a connection string with a GUI prompt on windows.
    ///
    /// # Return
    ///
    /// [`SqlResult::NoData`] in case the prompt completing the connection string has been aborted.
    ///
    /// # Safety
    ///
    /// `parent_window` must either be a valid window handle or `NULL`.
    pub unsafe fn driver_connect(
        &mut self,
        connection_string: &SqlText,
        parent_window: HWnd,
        completed_connection_string: &mut OutputStringBuffer,
        driver_completion: DriverConnectOption,
    ) -> SqlResult<()> {
        sql_driver_connect(
            self.handle,
            parent_window,
            connection_string.ptr(),
            connection_string.len_char().try_into().unwrap(),
            completed_connection_string.mut_buf_ptr(),
            completed_connection_string.buf_len(),
            completed_connection_string.mut_actual_len_ptr(),
            driver_completion,
        )
        .into_sql_result("SQLDriverConnect")
    }

    /// Disconnect from an ODBC data source.
    pub fn disconnect(&mut self) -> SqlResult<()> {
        unsafe { SQLDisconnect(self.handle).into_sql_result("SQLDisconnect") }
    }

    /// Allocate a new statement handle. The `Statement` must not outlive the `Connection`.
    pub fn allocate_statement(&self) -> SqlResult<StatementImpl<'_>> {
        let mut out = null_mut();
        unsafe {
            SQLAllocHandle(HandleType::Stmt, self.as_handle(), &mut out)
                .into_sql_result("SQLAllocHandle")
                .on_success(|| StatementImpl::new(out as HStmt))
        }
    }

    /// Specify the transaction mode. By default, ODBC transactions are in auto-commit mode (unless
    /// SQLSetConnectAttr and SQLSetConnectOption are not supported, which is unlikely). Switching
    /// from manual-commit mode to auto-commit mode automatically commits any open transaction on
    /// the connection.
    pub fn set_autocommit(&self, enabled: bool) -> SqlResult<()> {
        let val = enabled as u32;
        unsafe {
            sql_set_connect_attr(
                self.handle,
                ConnectionAttribute::AutoCommit,
                val as Pointer,
                0, // will be ignored according to ODBC spec
            )
            .into_sql_result("SQLSetConnectAttr")
        }
    }

    /// To commit a transaction in manual-commit mode.
    pub fn commit(&self) -> SqlResult<()> {
        unsafe {
            SQLEndTran(HandleType::Dbc, self.as_handle(), CompletionType::Commit)
                .into_sql_result("SQLEndTran")
        }
    }

    /// Roll back a transaction in manual-commit mode.
    pub fn rollback(&self) -> SqlResult<()> {
        unsafe {
            SQLEndTran(HandleType::Dbc, self.as_handle(), CompletionType::Rollback)
                .into_sql_result("SQLEndTran")
        }
    }

    /// Fetch the name of the database management system used by the connection and store it into
    /// the provided `buf`.
    pub fn fetch_database_management_system_name(&self, buf: &mut Vec<SqlChar>) -> SqlResult<()> {
        // String length in bytes, not characters. Terminating zero is excluded.
        let mut string_length_in_bytes: i16 = 0;
        // Let's utilize all of `buf`s capacity.
        buf.resize(buf.capacity(), 0);

        unsafe {
            let mut res = sql_get_info(
                self.handle,
                InfoType::DbmsName,
                mut_buf_ptr(buf) as Pointer,
                binary_length(buf).try_into().unwrap(),
                &mut string_length_in_bytes as *mut i16,
            )
            .into_sql_result("SQLGetInfo");

            if res.is_err() {
                return res;
            }

            // Call has been a success but let's check if the buffer had been large enough.
            if is_truncated_bin(buf, string_length_in_bytes.try_into().unwrap()) {
                // It seems we must try again with a large enough buffer.
                resize_to_fit_with_tz(buf, string_length_in_bytes.try_into().unwrap());
                res = sql_get_info(
                    self.handle,
                    InfoType::DbmsName,
                    mut_buf_ptr(buf) as Pointer,
                    binary_length(buf).try_into().unwrap(),
                    &mut string_length_in_bytes as *mut i16,
                )
                .into_sql_result("SQLGetInfo");

                if res.is_err() {
                    return res;
                }
            }

            // Resize buffer to exact string length without terminal zero
            resize_to_fit_without_tz(buf, string_length_in_bytes.try_into().unwrap());
            res
        }
    }

    fn info_u16(&self, info_type: InfoType) -> SqlResult<u16> {
        unsafe {
            let mut value = 0u16;
            sql_get_info(
                self.handle,
                info_type,
                &mut value as *mut u16 as Pointer,
                // Buffer length should not be required in this case, according to the ODBC
                // documentation at https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlgetinfo-function?view=sql-server-ver15#arguments
                // However, in practice some drivers (such as Microsoft Access) require it to be
                // specified explicitly here, otherwise they return an error without diagnostics.
                size_of::<*mut u16>() as i16,
                null_mut(),
            )
            .into_sql_result("SQLGetInfo")
            .on_success(|| value)
        }
    }

    /// Maximum length of catalog names.
    pub fn max_catalog_name_len(&self) -> SqlResult<u16> {
        self.info_u16(InfoType::MaxCatalogNameLen)
    }

    /// Maximum length of schema names.
    pub fn max_schema_name_len(&self) -> SqlResult<u16> {
        self.info_u16(InfoType::MaxSchemaNameLen)
    }

    /// Maximum length of table names.
    pub fn max_table_name_len(&self) -> SqlResult<u16> {
        self.info_u16(InfoType::MaxTableNameLen)
    }

    /// Maximum length of column names.
    pub fn max_column_name_len(&self) -> SqlResult<u16> {
        self.info_u16(InfoType::MaxColumnNameLen)
    }

    /// Fetch the name of the current catalog being used by the connection and store it into the
    /// provided `buf`.
    pub fn fetch_current_catalog(&self, buffer: &mut Vec<SqlChar>) -> SqlResult<()> {
        // String length in bytes, not characters. Terminating zero is excluded.
        let mut string_length_in_bytes: i32 = 0;
        // Let's utilize all of `buf`s capacity.
        buffer.resize(buffer.capacity(), 0);

        unsafe {
            let mut res = sql_get_connect_attr(
                self.handle,
                ConnectionAttribute::CurrentCatalog,
                mut_buf_ptr(buffer) as Pointer,
                binary_length(buffer).try_into().unwrap(),
                &mut string_length_in_bytes as *mut i32,
            )
            .into_sql_result("SQLGetConnectAttr");

            if res.is_err() {
                return res;
            }

            if is_truncated_bin(buffer, string_length_in_bytes.try_into().unwrap()) {
                resize_to_fit_with_tz(buffer, string_length_in_bytes.try_into().unwrap());
                res = sql_get_connect_attr(
                    self.handle,
                    ConnectionAttribute::CurrentCatalog,
                    mut_buf_ptr(buffer) as Pointer,
                    binary_length(buffer).try_into().unwrap(),
                    &mut string_length_in_bytes as *mut i32,
                )
                .into_sql_result("SQLGetConnectAttr");
            }

            if res.is_err() {
                return res;
            }

            // Resize buffer to exact string length without terminal zero
            resize_to_fit_without_tz(buffer, string_length_in_bytes.try_into().unwrap());
            res
        }
    }

    /// Indicates the state of the connection. If `true` the connection has been lost. If `false`,
    /// the connection is still active.
    pub fn is_dead(&self) -> SqlResult<bool> {
        unsafe {
            self.attribute_u32(ConnectionAttribute::ConnectionDead)
                .map(|v| match v {
                    0 => false,
                    1 => true,
                    other => panic!("Unexpected result value from SQLGetConnectAttr: {}", other),
                })
        }
    }
Examples found in repository?
src/execute.rs (line 209)
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
pub fn execute_columns<S>(
    mut statement: S,
    catalog_name: &SqlText,
    schema_name: &SqlText,
    table_name: &SqlText,
    column_name: &SqlText,
) -> Result<CursorImpl<S>, Error>
where
    S: AsStatementRef,
{
    let mut stmt = statement.as_stmt_ref();

    stmt.columns(catalog_name, schema_name, table_name, column_name)
        .into_result(&stmt)?;

    // We assume columns always creates a result set, since it works like a SELECT statement.
    debug_assert_ne!(stmt.num_result_cols().unwrap(), 0);

    // Safe: `statement` is in cursor state
    let cursor = unsafe { CursorImpl::new(statement) };
    Ok(cursor)
}

/// Shared implementation for executing a tables query between [`crate::Connection`] and
/// [`crate::Preallocated`].
pub fn execute_tables<S>(
    mut statement: S,
    catalog_name: &SqlText,
    schema_name: &SqlText,
    table_name: &SqlText,
    column_name: &SqlText,
) -> Result<CursorImpl<S>, Error>
where
    S: AsStatementRef,
{
    let mut stmt = statement.as_stmt_ref();

    stmt.tables(catalog_name, schema_name, table_name, column_name)
        .into_result(&stmt)?;

    // We assume columns always creates a result set, since it works like a SELECT statement.
    debug_assert_ne!(stmt.num_result_cols().unwrap(), 0);

    // Safe: `statement` is in Cursor state.
    let cursor = unsafe { CursorImpl::new(statement) };

    Ok(cursor)
}

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
This method tests for self and other values to be equal, and is used by ==.
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.