pub struct VTLowLatencyFrameInterpolationConfiguration { /* private fields */ }VTFrameProcessor_LowLatencyFrameInterpolation and objc2 only.Expand description
Configuration that you use to program Video Toolbox frame processor for low-latency frame interpolation.
This configuration can do either purely temporal interpolation (frame-rate conversion) or temporal and spatial
interpolation (scaling and frame-rate conversion). This processor requires a source frame and a previous frame. It
does temporal scaling, which interpolates frames between the previous frame and the source frame. When performing
both temporal and spatial interpolation, the processor can only perform 2x upscaling, and a single frame of temporal
interpolation. When performing spatial scaling, the processor produces upscaled intermediate frames and an upscaled
sourceFrame, but it does not upscale the previous reference frame you provided.
Important: When calling
VTFrameProcessor/startSessionWithConfiguration:error:to create aVTLowLatencyFrameInterpolationsession, ML model loading may take longer than a frame time. Avoid blocking the UI thread or stalling frame rendering pipelines during this call.
See also Apple’s documentation
Implementations§
Source§impl VTLowLatencyFrameInterpolationConfiguration
impl VTLowLatencyFrameInterpolationConfiguration
Sourcepub unsafe fn initWithFrameWidth_frameHeight_numberOfInterpolatedFrames(
this: Allocated<Self>,
frame_width: NSInteger,
frame_height: NSInteger,
number_of_interpolated_frames: NSInteger,
) -> Option<Retained<Self>>
pub unsafe fn initWithFrameWidth_frameHeight_numberOfInterpolatedFrames( this: Allocated<Self>, frame_width: NSInteger, frame_height: NSInteger, number_of_interpolated_frames: NSInteger, ) -> Option<Retained<Self>>
Creates a new low-latency frame interpolation configuration for frame-rate conversion.
The available interpolation points are the equal to the value of (2^x - 1), where x is equal to numberOfInterpolatedFrames.
For example,
-
If you request 1 interpolated frame, 1 interpolation point at 0.5 is available.
-
If you request 2 interpolated frames, 3 interpolation points at 0.25, 0.5 and 0.75 are available. You don’t need to use all available interpolation points. Setting a higher
numberOfInterpolatedFramesincreases the resolution of interpolation in some cases, but also increases latency. -
Parameters:
-
frameWidth: Width of source frame in pixels.
-
frameHeight: Height of source frame in pixels.
-
numberOfInterpolatedFrames: The number of uniformly spaced frames that you want to be used for interpolation.
Sourcepub unsafe fn initWithFrameWidth_frameHeight_spatialScaleFactor(
this: Allocated<Self>,
frame_width: NSInteger,
frame_height: NSInteger,
spatial_scale_factor: NSInteger,
) -> Option<Retained<Self>>
pub unsafe fn initWithFrameWidth_frameHeight_spatialScaleFactor( this: Allocated<Self>, frame_width: NSInteger, frame_height: NSInteger, spatial_scale_factor: NSInteger, ) -> Option<Retained<Self>>
Creates a new low-latency frame interpolation configuration for spatial scaling and temporal scaling.
When you configure the processor for spatial scaling, the low-latency frame interpolation processor only supports 2x spatial upscaling and a single frame of temporal interpolation at a 0.5 interpolation phase.
- Parameters:
- frameWidth: Width of source frame in pixels.
- frameHeight: Height of source frame in pixels.
- spatialScaleFactor: The requested spatial scale factor as an integer. Currently, the processor supports only 2x spatial scaling.
pub unsafe fn init(this: Allocated<Self>) -> Retained<Self>
pub unsafe fn new() -> Retained<Self>
Sourcepub unsafe fn frameWidth(&self) -> NSInteger
pub unsafe fn frameWidth(&self) -> NSInteger
Width of source frames in pixels.
This property is not atomic.
§Safety
This might not be thread-safe.
Sourcepub unsafe fn frameHeight(&self) -> NSInteger
pub unsafe fn frameHeight(&self) -> NSInteger
Height of source frames in pixels.
This property is not atomic.
§Safety
This might not be thread-safe.
Sourcepub unsafe fn spatialScaleFactor(&self) -> NSInteger
pub unsafe fn spatialScaleFactor(&self) -> NSInteger
Configured spatial scale factor as an integer.
This property is not atomic.
§Safety
This might not be thread-safe.
Sourcepub unsafe fn numberOfInterpolatedFrames(&self) -> NSInteger
pub unsafe fn numberOfInterpolatedFrames(&self) -> NSInteger
Number of uniformly spaced frames for which you configured the processor.
This property is not atomic.
§Safety
This might not be thread-safe.
Sourcepub unsafe fn frameSupportedPixelFormats(&self) -> Retained<NSArray<NSNumber>>
Available on crate feature objc2-foundation only.
pub unsafe fn frameSupportedPixelFormats(&self) -> Retained<NSArray<NSNumber>>
objc2-foundation only.Available supported pixel formats for current configuration.
This property is not atomic.
§Safety
This might not be thread-safe.
Sourcepub unsafe fn sourcePixelBufferAttributes(
&self,
) -> Retained<NSDictionary<NSString, AnyObject>>
Available on crate feature objc2-foundation only.
pub unsafe fn sourcePixelBufferAttributes( &self, ) -> Retained<NSDictionary<NSString, AnyObject>>
objc2-foundation only.Pixel buffer attributes dictionary that describes requirements for pixel buffers which represent source frames and reference frames.
Use CVPixelBufferCreateResolvedAttributesDictionary to combine this dictionary with your pixel buffer attributes dictionary.
This property is not atomic.
§Safety
This might not be thread-safe.
Sourcepub unsafe fn destinationPixelBufferAttributes(
&self,
) -> Retained<NSDictionary<NSString, AnyObject>>
Available on crate feature objc2-foundation only.
pub unsafe fn destinationPixelBufferAttributes( &self, ) -> Retained<NSDictionary<NSString, AnyObject>>
objc2-foundation only.Pixel buffer attributes dictionary that describes requirements for pixel buffers which represent destination frames.
Use CVPixelBufferCreateResolvedAttributesDictionary to combine this dictionary with your pixel buffer attributes dictionary.
This property is not atomic.
§Safety
This might not be thread-safe.
Sourcepub unsafe fn isSupported() -> bool
pub unsafe fn isSupported() -> bool
Reports whether the system supports this processor.
Methods from Deref<Target = NSObject>§
Sourcepub fn doesNotRecognizeSelector(&self, sel: Sel) -> !
pub fn doesNotRecognizeSelector(&self, sel: Sel) -> !
Handle messages the object doesn’t recognize.
See Apple’s documentation for details.
Methods from Deref<Target = AnyObject>§
Sourcepub fn class(&self) -> &'static AnyClass
pub fn class(&self) -> &'static AnyClass
Dynamically find the class of this object.
§Panics
May panic if the object is invalid (which may be the case for objects
returned from unavailable init/new methods).
§Example
Check that an instance of NSObject has the precise class NSObject.
use objc2::ClassType;
use objc2::runtime::NSObject;
let obj = NSObject::new();
assert_eq!(obj.class(), NSObject::class());Sourcepub unsafe fn get_ivar<T>(&self, name: &str) -> &Twhere
T: Encode,
👎Deprecated: this is difficult to use correctly, use Ivar::load instead.
pub unsafe fn get_ivar<T>(&self, name: &str) -> &Twhere
T: Encode,
Ivar::load instead.Use Ivar::load instead.
§Safety
The object must have an instance variable with the given name, and it
must be of type T.
See Ivar::load_ptr for details surrounding this.
Sourcepub fn downcast_ref<T>(&self) -> Option<&T>where
T: DowncastTarget,
pub fn downcast_ref<T>(&self) -> Option<&T>where
T: DowncastTarget,
Attempt to downcast the object to a class of type T.
This is the reference-variant. Use Retained::downcast if you want
to convert a retained object to another type.
§Mutable classes
Some classes have immutable and mutable variants, such as NSString
and NSMutableString.
When some Objective-C API signature says it gives you an immutable class, it generally expects you to not mutate that, even though it may technically be mutable “under the hood”.
So using this method to convert a NSString to a NSMutableString,
while not unsound, is generally frowned upon unless you created the
string yourself, or the API explicitly documents the string to be
mutable.
See Apple’s documentation on mutability and on
isKindOfClass: for more details.
§Generic classes
Objective-C generics are called “lightweight generics”, and that’s because they aren’t exposed in the runtime. This makes it impossible to safely downcast to generic collections, so this is disallowed by this method.
You can, however, safely downcast to generic collections where all the
type-parameters are AnyObject.
§Panics
This works internally by calling isKindOfClass:. That means that the
object must have the instance method of that name, and an exception
will be thrown (if CoreFoundation is linked) or the process will abort
if that is not the case. In the vast majority of cases, you don’t need
to worry about this, since both root objects NSObject and
NSProxy implement this method.
§Examples
Cast an NSString back and forth from NSObject.
use objc2::rc::Retained;
use objc2_foundation::{NSObject, NSString};
let obj: Retained<NSObject> = NSString::new().into_super();
let string = obj.downcast_ref::<NSString>().unwrap();
// Or with `downcast`, if we do not need the object afterwards
let string = obj.downcast::<NSString>().unwrap();Try (and fail) to cast an NSObject to an NSString.
use objc2_foundation::{NSObject, NSString};
let obj = NSObject::new();
assert!(obj.downcast_ref::<NSString>().is_none());Try to cast to an array of strings.
use objc2_foundation::{NSArray, NSObject, NSString};
let arr = NSArray::from_retained_slice(&[NSObject::new()]);
// This is invalid and doesn't type check.
let arr = arr.downcast_ref::<NSArray<NSString>>();This fails to compile, since it would require enumerating over the array to ensure that each element is of the desired type, which is a performance pitfall.
Downcast when processing each element instead.
use objc2_foundation::{NSArray, NSObject, NSString};
let arr = NSArray::from_retained_slice(&[NSObject::new()]);
for elem in arr {
if let Some(data) = elem.downcast_ref::<NSString>() {
// handle `data`
}
}Trait Implementations§
Source§impl AsRef<VTLowLatencyFrameInterpolationConfiguration> for VTLowLatencyFrameInterpolationConfiguration
impl AsRef<VTLowLatencyFrameInterpolationConfiguration> for VTLowLatencyFrameInterpolationConfiguration
Source§impl ClassType for VTLowLatencyFrameInterpolationConfiguration
impl ClassType for VTLowLatencyFrameInterpolationConfiguration
Source§const NAME: &'static str = "VTLowLatencyFrameInterpolationConfiguration"
const NAME: &'static str = "VTLowLatencyFrameInterpolationConfiguration"
Source§type ThreadKind = <<VTLowLatencyFrameInterpolationConfiguration as ClassType>::Super as ClassType>::ThreadKind
type ThreadKind = <<VTLowLatencyFrameInterpolationConfiguration as ClassType>::Super as ClassType>::ThreadKind
Source§impl NSObjectProtocol for VTLowLatencyFrameInterpolationConfiguration
impl NSObjectProtocol for VTLowLatencyFrameInterpolationConfiguration
Source§fn isEqual(&self, other: Option<&AnyObject>) -> bool
fn isEqual(&self, other: Option<&AnyObject>) -> bool
Source§fn hash(&self) -> usize
fn hash(&self) -> usize
Source§fn isKindOfClass(&self, cls: &AnyClass) -> bool
fn isKindOfClass(&self, cls: &AnyClass) -> bool
Source§fn is_kind_of<T>(&self) -> bool
fn is_kind_of<T>(&self) -> bool
isKindOfClass directly, or cast your objects with AnyObject::downcast_refSource§fn isMemberOfClass(&self, cls: &AnyClass) -> bool
fn isMemberOfClass(&self, cls: &AnyClass) -> bool
Source§fn respondsToSelector(&self, aSelector: Sel) -> bool
fn respondsToSelector(&self, aSelector: Sel) -> bool
Source§fn conformsToProtocol(&self, aProtocol: &AnyProtocol) -> bool
fn conformsToProtocol(&self, aProtocol: &AnyProtocol) -> bool
Source§fn debugDescription(&self) -> Retained<NSObject>
fn debugDescription(&self) -> Retained<NSObject>
Source§impl RefEncode for VTLowLatencyFrameInterpolationConfiguration
impl RefEncode for VTLowLatencyFrameInterpolationConfiguration
Source§const ENCODING_REF: Encoding = <NSObject as ::objc2::RefEncode>::ENCODING_REF
const ENCODING_REF: Encoding = <NSObject as ::objc2::RefEncode>::ENCODING_REF
Source§impl VTFrameProcessorConfiguration for VTLowLatencyFrameInterpolationConfiguration
impl VTFrameProcessorConfiguration for VTLowLatencyFrameInterpolationConfiguration
Source§unsafe fn isSupported() -> bool
unsafe fn isSupported() -> bool
VTFrameProcessorConfiguration and objc2 only.Source§unsafe fn frameSupportedPixelFormats(&self) -> Retained<NSArray<NSNumber>>
unsafe fn frameSupportedPixelFormats(&self) -> Retained<NSArray<NSNumber>>
VTFrameProcessorConfiguration and objc2 and objc2-foundation only.Source§unsafe fn sourcePixelBufferAttributes(
&self,
) -> Retained<NSDictionary<NSString, AnyObject>>
unsafe fn sourcePixelBufferAttributes( &self, ) -> Retained<NSDictionary<NSString, AnyObject>>
VTFrameProcessorConfiguration and objc2 and objc2-foundation only.Source§unsafe fn destinationPixelBufferAttributes(
&self,
) -> Retained<NSDictionary<NSString, AnyObject>>
unsafe fn destinationPixelBufferAttributes( &self, ) -> Retained<NSDictionary<NSString, AnyObject>>
VTFrameProcessorConfiguration and objc2 and objc2-foundation only.Source§unsafe fn nextFrameCount(&self) -> NSInteger
unsafe fn nextFrameCount(&self) -> NSInteger
VTFrameProcessorConfiguration and objc2 only.Source§unsafe fn previousFrameCount(&self) -> NSInteger
unsafe fn previousFrameCount(&self) -> NSInteger
VTFrameProcessorConfiguration and objc2 only.Source§unsafe fn maximumDimensions() -> CMVideoDimensions
unsafe fn maximumDimensions() -> CMVideoDimensions
VTFrameProcessorConfiguration and objc2 and objc2-core-media only.sourceFrame for the processor.Source§unsafe fn minimumDimensions() -> CMVideoDimensions
unsafe fn minimumDimensions() -> CMVideoDimensions
VTFrameProcessorConfiguration and objc2 and objc2-core-media only.sourceFrame for the processor.