Expand description
§Bindings to the MetalPerformanceShaders framework
See Apple’s docs and the general docs on framework crates for more information.
Structs§
- MPSAcceleration
Structure Deprecated MPSAccelerationStructureandMPSCoreandMPSKernel - A data structure built over geometry used to accelerate ray tracing
- MPSAcceleration
Structure Group Deprecated MPSAccelerationStructureGroup - A group of acceleration structures which may be used together in an instance acceleration structure.
- MPSAcceleration
Structure Status Deprecated MPSAccelerationStructure - Possible values of the acceleration structure status property
- MPSAcceleration
Structure Usage Deprecated MPSAccelerationStructure - Options describing how an acceleration structure will be used
- MPSAliasing
Strategy MPSCoreTypes - Apple’s documentation
- MPSAlpha
Type MPSImageTypes - Apple’s documentation
- MPSBinary
Image Kernel MPSCoreandMPSImageKernelandMPSKernel - Dependencies: This depends on Metal.framework
- MPSBounding
BoxIntersection Test Type Deprecated MPSRayIntersector - Options for the MPSRayIntersector bounding box intersection test type property
- MPSCNN
Add MPSCNNKernelandMPSCNNMathandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSCNN
AddGradient MPSCNNKernelandMPSCNNMathandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSCNN
Arithmetic MPSCNNKernelandMPSCNNMathandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Arithmetic Gradient MPSCNNKernelandMPSCNNMathandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Arithmetic Gradient State MPSCNNMathandMPSCoreandMPSNNGradientStateandMPSState - Dependencies: This depends on Metal.framework.
- MPSCNN
Batch Normalization MPSCNNBatchNormalizationandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Batch Normalization Flags MPSNeuralNetworkTypes - Apple’s documentation
- MPSCNN
Batch Normalization Gradient MPSCNNBatchNormalizationandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Batch Normalization Gradient Node MPSNNGraphNodes - A node representing batch normalization gradient for training
- MPSCNN
Batch Normalization Node MPSNNGraphNodes - A node representing batch normalization for inference or training
- MPSCNN
Batch Normalization State MPSCNNBatchNormalizationandMPSCoreandMPSNNGradientStateandMPSState - MPSCNNBatchNormalizationState encapsulates the data necessary to execute batch normalization.
- MPSCNN
Batch Normalization Statistics MPSCNNBatchNormalizationandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Batch Normalization Statistics Gradient MPSCNNBatchNormalizationandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Binary Convolution MPSCNNConvolutionandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Binary Convolution Flags MPSNeuralNetworkTypes - Apple’s documentation
- MPSCNN
Binary Convolution Node MPSNNGraphNodes - A MPSNNFilterNode representing a MPSCNNBinaryConvolution kernel
- MPSCNN
Binary Convolution Type MPSNeuralNetworkTypes - Apple’s documentation
- MPSCNN
Binary Fully Connected MPSCNNConvolutionandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Binary Fully Connected Node MPSNNGraphNodes - A MPSNNFilterNode representing a MPSCNNBinaryFullyConnected kernel
- MPSCNN
Binary Kernel MPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Convolution MPSCNNConvolutionandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Convolution Descriptor MPSCNNConvolution - Dependencies: This depends on Metal.framework
- MPSCNN
Convolution Flags MPSNeuralNetworkTypes - Apple’s documentation
- MPSCNN
Convolution Gradient MPSCNNConvolutionandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Convolution Gradient Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Convolution Gradient Option MPSCNNConvolution - Apple’s documentation
- MPSCNN
Convolution Gradient State MPSCNNConvolutionandMPSCoreandMPSNNGradientStateandMPSState - The MPSCNNConvolutionGradientState is returned by resultStateForSourceImage:sourceStates method on MPSCNNConvolution object. Note that resultStateForSourceImage:sourceStates:destinationImage creates the object on autoreleasepool. It will be consumed by MPSCNNConvolutionGradient. This is also used by MPSCNNConvolutionTranspose encode call that returns MPSImage on left hand side to correctly size the destination. Note that state objects are not usable across batches i.e. when batch is done you should nuke the state object and create new one for next batch.
- MPSCNN
Convolution Gradient State Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Convolution Node MPSNNGraphNodes - A MPSNNFilterNode representing a MPSCNNConvolution kernel
- MPSCNN
Convolution Transpose MPSCNNConvolutionandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Convolution Transpose Gradient MPSCNNConvolutionandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Convolution Transpose Gradient Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Convolution Transpose Gradient State MPSCNNConvolutionandMPSCoreandMPSNNGradientStateandMPSState - The MPSCNNConvolutionTransposeGradientState is returned by resultStateForSourceImage:sourceStates method on MPSCNNConvolutionTranspose object. Note that resultStateForSourceImage:sourceStates:destinationImage creates the object on autoreleasepool. It will be consumed by MPSCNNConvolutionTransposeGradient. It contains reference to MPSCNNConvolutionGradientState object that connects MPSCNNConvolution and its corresponding MPSCNNConvolutionTranspose in forward pass of autoencoder. In an autoencoder forward pass, MPSCNNConvolutionGradientState is produced by MPSCNNConvolution object and is used by corresponding MPSCNNConvolutionTraspose of forward pass that “undo” the corresponding MPSCNNConvolution. It is used to correctly size destination image that is returned on left hand side by encode call MPSCNNConvolutionTranspose as well as automatically set kernelOffsetX/Y on MPSCNNConvolutionTranspose using the offset and other properties of corresponding MPSCNNConvolution object. During training, same MPSCNNConvolutionGradientState object will be consumed by MPSCNNConvolutionGradient object and the MPSCNNConvolutionTransposeGradientState produced by MPSCNNConvolutionTranspose’s resultStateForSourceImage:sourceStates:destinationImage will be consumed by MPSCNNConvolutionTransposeGradient object
- MPSCNN
Convolution Transpose Gradient State Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Convolution Transpose Node MPSNNGraphNodes - A MPSNNFilterNode representing a MPSCNNConvolutionTranspose kernel
- MPSCNN
Convolution Weights AndBiases State MPSCNNConvolutionandMPSCoreandMPSState - The MPSCNNConvolutionWeightsAndBiasesState is returned by exportWeightsAndBiasesWithCommandBuffer: method on MPSCNNConvolution object. This is mainly used for GPU side weights/biases update process. During training, application can keep a copy of weights, velocity, momentum MTLBuffers in its data source, update the weights (in-place or out of place) with gradients obtained from MPSCNNConvolutionGradientState and call [MPSCNNConvolution reloadWeightsAndBiasesWithCommandBuffer] with resulting updated MTLBuffer. If application does not want to keep a copy of weights/biases, it can call [MPSCNNConvolution exportWeightsAndBiasesWithCommandBuffer:] to get the current weights from convolution itself, do the updated and call reloadWithCommandBuffer.
- MPSCNN
Convolution Weights Layout MPSCNNConvolution - Apple’s documentation
- MPSCNN
Cross Channel Normalization MPSCNNKernelandMPSCNNNormalizationandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Cross Channel Normalization Gradient MPSCNNKernelandMPSCNNNormalizationandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Cross Channel Normalization Gradient Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Cross Channel Normalization Node MPSNNGraphNodes - Node representing MPSCNNCrossChannelNormalization
- MPSCNN
Depth Wise Convolution Descriptor MPSCNNConvolution - MPSCNNDepthWiseConvolutionDescriptor can be used to create MPSCNNConvolution object that does depthwise convolution
- MPSCNN
Dilated Pooling Max MPSCNNKernelandMPSCNNPoolingandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Dilated Pooling MaxGradient MPSCNNKernelandMPSCNNPoolingandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Dilated Pooling MaxGradient Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Dilated Pooling MaxNode MPSNNGraphNodes - A node for a MPSCNNDilatedPooling kernel
- MPSCNN
Divide MPSCNNKernelandMPSCNNMathandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSCNN
Dropout MPSCNNDropoutandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Dropout Gradient MPSCNNDropoutandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Dropout Gradient Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Dropout Gradient State MPSCNNDropoutandMPSCoreandMPSNNGradientStateandMPSState - Dependencies: This depends on Metal.framework.
- MPSCNN
Dropout Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Fully Connected MPSCNNConvolutionandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Fully Connected Gradient MPSCNNConvolutionandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Fully Connected Gradient Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Fully Connected Node MPSNNGraphNodes - A MPSNNFilterNode representing a MPSCNNFullyConnected kernel
- MPSCNN
Gradient Kernel MPSCNNKernelandMPSCoreandMPSKernel - Gradient kernels are the backwards pass of a MPSCNNKernel used during training to calculate gradient back propagation. These take as arguments the gradient result from the next filter and the source image for the forward version of the filter. There is also a MPSNNGradientState passed from MPSCNNKernel to MPSCNNGradientKernel that contains information about the MPSCNNKernel parameters at the time it encoded and possibly also additional MTLResources to enable it to do its job.
- MPSCNN
Group Normalization MPSCNNGroupNormalizationandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Group Normalization Gradient MPSCNNGroupNormalizationandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Group Normalization Gradient Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Group Normalization Gradient State MPSCNNGroupNormalizationandMPSCoreandMPSNNGradientStateandMPSState - Dependencies: This depends on Metal.framework
- MPSCNN
Group Normalization Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Instance Normalization MPSCNNInstanceNormalizationandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Instance Normalization Gradient MPSCNNInstanceNormalizationandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Instance Normalization Gradient Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Instance Normalization Gradient State MPSCNNInstanceNormalizationandMPSCoreandMPSNNGradientStateandMPSState - Dependencies: This depends on Metal.framework
- MPSCNN
Instance Normalization Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Kernel MPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Local Contrast Normalization MPSCNNKernelandMPSCNNNormalizationandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Local Contrast Normalization Gradient MPSCNNKernelandMPSCNNNormalizationandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Local Contrast Normalization Gradient Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Local Contrast Normalization Node MPSNNGraphNodes - Node representing MPSCNNLocalContrastNormalization
- MPSCNN
LogSoft Max MPSCNNKernelandMPSCNNSoftMaxandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
LogSoft MaxGradient MPSCNNKernelandMPSCNNSoftMaxandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
LogSoft MaxGradient Node MPSNNGraphNodes - Node representing a MPSCNNLogSoftMaxGradient kernel
- MPSCNN
LogSoft MaxNode MPSNNGraphNodes - Node representing a MPSCNNLogSoftMax kernel
- MPSCNN
Loss MPSCNNKernelandMPSCNNLossandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSCNN
Loss Data Descriptor MPSCNNLoss - Dependencies: This depends on Metal.framework.
- MPSCNN
Loss Descriptor MPSCNNLoss - Dependencies: This depends on Metal.framework.
- MPSCNN
Loss Labels MPSCNNLossandMPSCoreandMPSState - Dependencies: This depends on Metal.framework.
- MPSCNN
Loss Node MPSNNGraphNodes - This node calculates loss information during training typically immediately after the inference portion of network evaluation is performed. The result image of the loss operations is typically the first gradient image to be comsumed by the gradient passes that work their way back up the graph. In addition, the node will update the loss image in the MPSNNLabels with the desired estimate of correctness.
- MPSCNN
Loss Type MPSCNNTypes - Apple’s documentation
- MPSCNN
Multiary Kernel MPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Multiply MPSCNNKernelandMPSCNNMathandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSCNN
Multiply Gradient MPSCNNKernelandMPSCNNMathandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSCNN
Neuron MPSCNNKernelandMPSCNNNeuronandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Neuron Absolute MPSCNNKernelandMPSCNNNeuronandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Neuron Absolute Node MPSNNGraphNodes - A node representing a MPSCNNNeuronAbsolute kernel
- MPSCNN
NeuronELU MPSCNNKernelandMPSCNNNeuronandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
NeuronELU Node MPSNNGraphNodes - A node representing a MPSCNNNeuronELU kernel
- MPSCNN
Neuron Exponential MPSCNNKernelandMPSCNNNeuronandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSCNN
Neuron Exponential Node MPSNNGraphNodes - A node representing a MPSCNNNeuronExponential kernel
- MPSCNN
Neuron GeLU Node MPSNNGraphNodes - A node representing a MPSCNNNeuronGeLU kernel
- MPSCNN
Neuron Gradient MPSCNNKernelandMPSCNNNeuronandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Neuron Gradient Node MPSNNGraphNodes - A node representing a MPSCNNNeuronGradient
- MPSCNN
Neuron Hard Sigmoid MPSCNNKernelandMPSCNNNeuronandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Neuron Hard Sigmoid Node MPSNNGraphNodes - A node representing a MPSCNNNeuronHardSigmoid kernel
- MPSCNN
Neuron Linear MPSCNNKernelandMPSCNNNeuronandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Neuron Linear Node MPSNNGraphNodes - A node representing a MPSCNNNeuronLinear kernel
- MPSCNN
Neuron Logarithm MPSCNNKernelandMPSCNNNeuronandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSCNN
Neuron Logarithm Node MPSNNGraphNodes - A node representing a MPSCNNNeuronLogarithm kernel
- MPSCNN
Neuron Node MPSNNGraphNodes - virtual base class for MPSCNNNeuron nodes
- MPSCNN
NeuronP ReLU MPSCNNKernelandMPSCNNNeuronandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
NeuronP ReLU Node MPSNNGraphNodes - A ReLU node with parameter a provided independently for each feature channel
- MPSCNN
Neuron Power MPSCNNKernelandMPSCNNNeuronandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSCNN
Neuron Power Node MPSNNGraphNodes - A node representing a MPSCNNNeuronPower kernel
- MPSCNN
Neuron ReLU MPSCNNKernelandMPSCNNNeuronandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Neuron ReLUN MPSCNNKernelandMPSCNNNeuronandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Neuron ReLUN Node MPSNNGraphNodes - A node representing a MPSCNNNeuronReLUN kernel
- MPSCNN
Neuron ReLU Node MPSNNGraphNodes - A node representing a MPSCNNNeuronReLU kernel
- MPSCNN
Neuron Sigmoid MPSCNNKernelandMPSCNNNeuronandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Neuron Sigmoid Node MPSNNGraphNodes - A node representing a MPSCNNNeuronSigmoid kernel
- MPSCNN
Neuron Soft Plus MPSCNNKernelandMPSCNNNeuronandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Neuron Soft Plus Node MPSNNGraphNodes - A node representing a MPSCNNNeuronSoftPlus kernel
- MPSCNN
Neuron Soft Sign MPSCNNKernelandMPSCNNNeuronandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Neuron Soft Sign Node MPSNNGraphNodes - A node representing a MPSCNNNeuronSoftSign kernel
- MPSCNN
Neuron TanH MPSCNNKernelandMPSCNNNeuronandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Neuron TanH Node MPSNNGraphNodes - A node representing a MPSCNNNeuronTanH kernel
- MPSCNN
Neuron Type MPSCNNNeuronType - Apple’s documentation
- MPSCNN
Normalization Gamma AndBeta State MPSCNNNormalizationWeightsandMPSCoreandMPSState - A state which contains gamma and beta terms used to apply a scale and bias in either an MPSCNNInstanceNormalization or MPSCNNBatchNormalization operation.
- MPSCNN
Normalization Mean AndVariance State MPSCNNBatchNormalizationandMPSCoreandMPSState - A state which contains mean and variance terms used to apply a normalization in a MPSCNNBatchNormalization operation.
- MPSCNN
Normalization Node MPSNNGraphNodes - virtual base class for CNN normalization nodes
- MPSCNN
Pooling MPSCNNKernelandMPSCNNPoolingandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Pooling Average MPSCNNKernelandMPSCNNPoolingandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Pooling Average Gradient MPSCNNKernelandMPSCNNPoolingandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Pooling Average Gradient Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Pooling Average Node MPSNNGraphNodes - A node representing a MPSCNNPoolingAverage kernel
- MPSCNN
Pooling Gradient MPSCNNKernelandMPSCNNPoolingandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Pooling Gradient Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Pooling L2Norm MPSCNNKernelandMPSCNNPoolingandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Pooling L2Norm Gradient MPSCNNKernelandMPSCNNPoolingandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Pooling L2Norm Gradient Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Pooling L2Norm Node MPSNNGraphNodes - A node representing a MPSCNNPoolingL2Norm kernel
- MPSCNN
Pooling Max MPSCNNKernelandMPSCNNPoolingandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Pooling MaxGradient MPSCNNKernelandMPSCNNPoolingandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Pooling MaxGradient Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Pooling MaxNode MPSNNGraphNodes - A node representing a MPSCNNPoolingMax kernel
- MPSCNN
Pooling Node MPSNNGraphNodes - A node for a MPSCNNPooling kernel
- MPSCNN
Reduction Type MPSCNNTypes - Apple’s documentation
- MPSCNN
Soft Max MPSCNNKernelandMPSCNNSoftMaxandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Soft MaxGradient MPSCNNKernelandMPSCNNSoftMaxandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Soft MaxGradient Node MPSNNGraphNodes - Node representing a MPSCNNSoftMaxGradient kernel
- MPSCNN
Soft MaxNode MPSNNGraphNodes - Node representing a MPSCNNSoftMax kernel
- MPSCNN
Spatial Normalization MPSCNNKernelandMPSCNNNormalizationandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Spatial Normalization Gradient MPSCNNKernelandMPSCNNNormalizationandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Spatial Normalization Gradient Node MPSNNGraphNodes - Apple’s documentation
- MPSCNN
Spatial Normalization Node MPSNNGraphNodes - Node representing MPSCNNSpatialNormalization
- MPSCNN
SubPixel Convolution Descriptor MPSCNNConvolution - MPSCNNSubPixelConvolutionDescriptor can be used to create MPSCNNConvolution object that does sub pixel upsamling and reshaping opeartion as described in http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shi_Real-Time_Single_Image_CVPR_2016_paper.pdf
- MPSCNN
Subtract MPSCNNKernelandMPSCNNMathandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSCNN
Subtract Gradient MPSCNNKernelandMPSCNNMathandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSCNN
Upsampling MPSCNNKernelandMPSCNNUpsamplingandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Upsampling Bilinear MPSCNNKernelandMPSCNNUpsamplingandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSCNN
Upsampling Bilinear Gradient MPSCNNKernelandMPSCNNUpsamplingandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSCNN
Upsampling Bilinear Gradient Node MPSNNGraphNodes - Node representing a MPSCNNUpsamplingBilinear kernel
- MPSCNN
Upsampling Bilinear Node MPSNNGraphNodes - Node representing a MPSCNNUpsamplingBilinear kernel
- MPSCNN
Upsampling Gradient MPSCNNKernelandMPSCNNUpsamplingandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSCNN
Upsampling Nearest MPSCNNKernelandMPSCNNUpsamplingandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSCNN
Upsampling Nearest Gradient MPSCNNKernelandMPSCNNUpsamplingandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSCNN
Upsampling Nearest Gradient Node MPSNNGraphNodes - Node representing a MPSCNNUpsamplingNearest kernel
- MPSCNN
Upsampling Nearest Node MPSNNGraphNodes - Node representing a MPSCNNUpsamplingNearest kernel
- MPSCNN
Weights Quantization Type MPSCNNConvolution - Apple’s documentation
- MPSCNNYOLO
Loss MPSCNNKernelandMPSCNNLossandMPSCoreandMPSKernel - Apple’s documentation
- MPSCNNYOLO
Loss Descriptor MPSCNNLoss - Dependencies: This depends on Metal.framework.
- MPSCNNYOLO
Loss Node MPSNNGraphNodes - This node calculates loss information during training typically immediately after the inference portion of network evaluation is performed. The result image of the loss operations is typically the first gradient image to be comsumed by the gradient passes that work their way back up the graph. In addition, the node will update the loss image in the MPSNNLabels with the desired estimate of correctness.
- MPSCommand
Buffer MPSCommandBuffer - Dependencies: This depends on Metal.framework
- MPSCustom
Kernel Argument Count MPSKernelTypes - Apple’s documentation
- MPSCustom
Kernel Index MPSKernelTypes - Apple’s documentation
- MPSData
Layout MPSImage - Apple’s documentation
- MPSData
Type MPSCoreTypes - Apple’s documentation
- MPSDevice
Caps Values MPSKernelTypes - Apple’s documentation
- MPSDevice
Options - Apple’s documentation
- MPSDimension
Slice MPSCoreTypes - Describes a sub-region of an array dimension
- MPSFloat
Data Type Bit MPSCoreTypes - Apple’s documentation
- MPSFloat
Data Type Shift MPSCoreTypes - Apple’s documentation
- MPSGRU
Descriptor MPSRNNLayer - Dependencies: This depends on Metal.framework
- MPSImage
MPSImage - Dependencies: This depends on Metal.framework
- MPSImage
Add MPSCoreandMPSImageKernelandMPSImageMathandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSImage
Area Max MPSCoreandMPSImageKernelandMPSImageMorphologyandMPSKernel - The MPSImageAreaMax kernel finds the maximum pixel value in a rectangular region centered around each pixel in the source image. If there are multiple channels in the source image, each channel is processed independently. The edgeMode property is assumed to always be MPSImageEdgeModeClamp for this filter.
- MPSImage
Area Min MPSCoreandMPSImageKernelandMPSImageMorphologyandMPSKernel - The MPSImageAreaMin finds the minimum pixel value in a rectangular region centered around each pixel in the source image. If there are multiple channels in the source image, each channel is processed independently. It has the same methods as MPSImageAreaMax The edgeMode property is assumed to always be MPSImageEdgeModeClamp for this filter.
- MPSImage
Arithmetic MPSCoreandMPSImageKernelandMPSImageMathandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSImage
Bilinear Scale MPSCoreandMPSImageKernelandMPSImageResamplingandMPSKernel - Resize an image and / or change its aspect ratio
- MPSImage
Box MPSCoreandMPSImageConvolutionandMPSImageKernelandMPSKernel - The MPSImageBox convolves an image with given filter of odd width and height. The kernel elements all have equal weight, achieving a blur effect. (Each result is the unweighted average of the surrounding pixels.) This allows for much faster algorithms, espcially for larger blur radii. The box height and width must be odd numbers. The box blur is a separable filter. The implementation is aware of this and will act accordingly to give best performance for multi-dimensional blurs.
- MPSImage
Canny MPSCoreandMPSImageConvolutionandMPSImageKernelandMPSKernel - The MPSImageCanny implements the Canny edge detection algorithm. When the color model of the source and destination textures match, the filter is applied to each channel seperately. If the destination is monochrome but source multichannel, the source will be converted to grayscale using the linear gray color transform vector (v). Luminance = v[0] * pixel.x + v[1] * pixel.y + v[2] * pixel.z;
- MPSImage
Conversion MPSCoreandMPSImageConversionandMPSImageKernelandMPSKernel - The MPSImageConversion filter performs a conversion from source to destination
- MPSImage
Convolution MPSCoreandMPSImageConvolutionandMPSImageKernelandMPSKernel - The MPSImageConvolution convolves an image with given filter of odd width and height. The center of the kernel aligns with the MPSImageConvolution.offset. That is, the position of the top left corner of the area covered by the kernel is given by MPSImageConvolution.offset - {kernel_width>>1, kernel_height>>1, 0}
- MPSImage
Coordinate MPSCoreTypes - A unsigned coordinate with x, y and channel components
- MPSImage
Copy ToMatrix MPSCoreandMPSImageCopyandMPSKernel - The MPSImageCopyToMatrix copies image data to a MPSMatrix. The image data is stored in a row of a matrix. The dataLayout specifies the order in which the feature channels in the MPSImage get stored in the matrix. If MPSImage stores a batch of images, the images are copied into multiple rows, one row per image.
- MPSImage
Descriptor MPSImage - Dependencies: This depends on Metal.framework
- MPSImage
Dilate MPSCoreandMPSImageKernelandMPSImageMorphologyandMPSKernel - The MPSImageDilate finds the maximum pixel value in a rectangular region centered around each pixel in the source image. It is like the MPSImageAreaMax, except that the intensity at each position is calculated relative to a different value before determining which is the maximum pixel value, allowing for shaped, non-rectangular morphological probes.
- MPSImage
Divide MPSCoreandMPSImageKernelandMPSImageMathandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSImageED
Lines MPSCoreandMPSImageEDLinesandMPSKernel - The MPSImageEDLInes class implements the EDLines line segmenting algorithm using edge-drawing (ED) described here https://ieeexplore.ieee.org/document/6116138
- MPSImage
Edge Mode MPSCoreTypes - Apple’s documentation
- MPSImage
Erode MPSCoreandMPSImageKernelandMPSImageMorphologyandMPSKernel - The MPSImageErode filter finds the minimum pixel value in a rectangular region centered around each pixel in the source image. It is like the MPSImageAreaMin, except that the intensity at each position is calculated relative to a different value before determining which is the maximum pixel value, allowing for shaped, non-rectangular morphological probes.
- MPSImage
Euclidean Distance Transform MPSCoreandMPSImageDistanceTransformandMPSImageKernelandMPSKernel - Perform a Euclidean Distance Transform
- MPSImage
Feature Channel Format MPSCoreTypes - Apple’s documentation
- MPSImage
Find Keypoints MPSCoreandMPSImageKeypointandMPSKernel - The MPSImageFindKeypoints kernel is used to find a list of keypoints whose values are >= minimumPixelThresholdValue in MPSImageKeypointRangeInfo. The keypoints are generated for a specified region in the image. The pixel format of the source image must be MTLPixelFormatR8Unorm.
- MPSImage
Gaussian Blur MPSCoreandMPSImageConvolutionandMPSImageKernelandMPSKernel - The MPSImageGaussianBlur convolves an image with gaussian of given sigma in both x and y direction.
- MPSImage
Gaussian Pyramid MPSCoreandMPSImageConvolutionandMPSImageKernelandMPSKernel - A Gaussian image pyramid is constructed as follows: The mipmap level zero is the source of the operation and is left untouched and the subsequent mipmap levels are constructed from it recursively:
- MPSImage
Guided Filter MPSCoreandMPSImageGuidedFilterandMPSKernel - Perform Guided Filter to produce a coefficients image The filter is broken into two stages:
- MPSImage
Histogram MPSCoreandMPSImageHistogramandMPSKernel - The MPSImageHistogram computes the histogram of an image.
- MPSImage
Histogram Equalization MPSCoreandMPSImageHistogramandMPSImageKernelandMPSKernel - The MPSImageHistogramEqualization performs equalizes the histogram of an image. The process is divided into three steps.
- MPSImage
Histogram Specification MPSCoreandMPSImageHistogramandMPSImageKernelandMPSKernel - The MPSImageHistogramSpecification performs a histogram specification operation on an image. It is a generalized version of histogram equalization operation. The histogram specificaiton filter converts the image so that its histogram matches the desired histogram.
- MPSImage
Integral MPSCoreandMPSImageIntegralandMPSImageKernelandMPSKernel - The MPSImageIntegral calculates the sum of pixels over a specified region in the image. The value at each position is the sum of all pixels in a source image rectangle, sumRect:
- MPSImage
Integral OfSquares MPSCoreandMPSImageIntegralandMPSImageKernelandMPSKernel - The MPSImageIntegralOfSquares calculates the sum of squared pixels over a specified region in the image. The value at each position is the sum of all squared pixels in a source image rectangle, sumRect:
- MPSImage
Keypoint Range Info MPSImageKeypoint - Specifies information to find the keypoints in an image.
- MPSImage
Lanczos Scale MPSCoreandMPSImageKernelandMPSImageResamplingandMPSKernel - Resize an image and / or change its aspect ratio
- MPSImage
Laplacian MPSCoreandMPSImageConvolutionandMPSImageKernelandMPSKernel - The MPSImageLaplacian is an optimized variant of the MPSImageConvolution filter provided primarily for ease of use. This filter uses an optimized convolution filter with a 3 x 3 kernel with the following weights: [ 0 1 0 1 -4 1 0 1 0 ]
- MPSImage
Laplacian Pyramid MPSCoreandMPSImageConvolutionandMPSImageKernelandMPSKernel - Laplacian pyramid levels are constructed as difference between the current source level and 2x interpolated version of the half-resolution source level immediately above it.
- MPSImage
Laplacian Pyramid Add MPSCoreandMPSImageConvolutionandMPSImageKernelandMPSKernel - Apple’s documentation
- MPSImage
Laplacian Pyramid Subtract MPSCoreandMPSImageConvolutionandMPSImageKernelandMPSKernel - Apple’s documentation
- MPSImage
Median MPSCoreandMPSImageKernelandMPSImageMedianandMPSKernel - The MPSImageMedian applies a median filter to an image. A median filter finds the median color value for each channel within a kernelDiameter x kernelDiameter window surrounding the pixel of interest. It is a common means of noise reduction and also as a smoothing filter with edge preserving qualities.
- MPSImage
Multiply MPSCoreandMPSImageKernelandMPSImageMathandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSImage
Normalized Histogram MPSCoreandMPSImageHistogramandMPSKernel - The MPSImageNormalizedHistogram computes the normalized histogram of an image. The minimum and maximum pixel values for a given region of an image are first computed. The max(computed minimum pixel value, MPSImageHistogramInfo.minPixelValue) and the min(computed maximum pixel value, MPSImageHistogramInfo.maxPixelValue) are used to compute the normalized histogram.
- MPSImage
Pyramid MPSCoreandMPSImageConvolutionandMPSImageKernelandMPSKernel - The MPSImagePyramid is a base class for creating different kinds of pyramid images
- MPSImage
Read Write Params MPSImage - these parameters are passed in to allow user to read/write to a particular set of featureChannels in an MPSImage
- MPSImage
Reduce Column Max MPSCoreandMPSImageKernelandMPSImageReduceandMPSKernel - The MPSImageReduceColumnMax performs a reduction operation returning the maximum value for each column of an image
- MPSImage
Reduce Column Mean MPSCoreandMPSImageKernelandMPSImageReduceandMPSKernel - The MPSImageReduceColumnMean performs a reduction operation returning the mean value for each column of an image
- MPSImage
Reduce Column Min MPSCoreandMPSImageKernelandMPSImageReduceandMPSKernel - The MPSImageReduceColumnMin performs a reduction operation returning the mininmum value for each column of an image
- MPSImage
Reduce Column Sum MPSCoreandMPSImageKernelandMPSImageReduceandMPSKernel - The MPSImageReduceColumnSum performs a reduction operation returning the sum for each column of an image
- MPSImage
Reduce RowMax MPSCoreandMPSImageKernelandMPSImageReduceandMPSKernel - The MPSImageReduceRowMax performs a reduction operation returning the maximum value for each row of an image
- MPSImage
Reduce RowMean MPSCoreandMPSImageKernelandMPSImageReduceandMPSKernel - The MPSImageReduceRowMean performs a reduction operation returning the mean value for each row of an image
- MPSImage
Reduce RowMin MPSCoreandMPSImageKernelandMPSImageReduceandMPSKernel - The MPSImageReduceRowMin performs a reduction operation returning the mininmum value for each row of an image
- MPSImage
Reduce RowSum MPSCoreandMPSImageKernelandMPSImageReduceandMPSKernel - The MPSImageReduceRowSum performs a reduction operation returning the sum for each row of an image
- MPSImage
Reduce Unary MPSCoreandMPSImageKernelandMPSImageReduceandMPSKernel - The MPSImageReduce performs a reduction operation The reduction operations supported are:
- MPSImage
Region MPSCoreTypes - A rectangular subregion of a MPSImage
- MPSImage
Scale MPSCoreandMPSImageKernelandMPSImageResamplingandMPSKernel - Resize an image and / or change its aspect ratio
- MPSImage
Sobel MPSCoreandMPSImageConvolutionandMPSImageKernelandMPSKernel - The MPSImageSobel implements the Sobel filter. When the color model (e.g. RGB, two-channel, grayscale, etc.) of source and destination textures match, the filter is applied to each channel separately. If the destination is monochrome (single channel) but source multichannel, the pixel values are converted to grayscale before applying Sobel operator using the linear gray color transform vector (v).
- MPSImage
Statistics Mean MPSCoreandMPSImageKernelandMPSImageStatisticsandMPSKernel - The MPSImageStatisticsMean computes the mean for a given region of an image.
- MPSImage
Statistics Mean AndVariance MPSCoreandMPSImageKernelandMPSImageStatisticsandMPSKernel - The MPSImageStatisticsMeanAndVariance computes the mean and variance for a given region of an image. The mean and variance values are written to the destination image at the following pixel locations:
- MPSImage
Statistics MinAnd Max MPSCoreandMPSImageKernelandMPSImageStatisticsandMPSKernel - The MPSImageStatisticsMinAndMax computes the minimum and maximum pixel values for a given region of an image. The min and max values are written to the destination image at the following pixel locations:
- MPSImage
Subtract MPSCoreandMPSImageKernelandMPSImageMathandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSImage
Tent MPSCoreandMPSImageConvolutionandMPSImageKernelandMPSKernel - The box filter, while fast, may yield square-ish looking blur effects. However, multiple passes of the box filter tend to smooth out with each additional pass. For example, two 3-wide box blurs produces the same effective convolution as a 5-wide tent blur:
- MPSImage
Threshold Binary MPSCoreandMPSImageKernelandMPSImageThresholdandMPSKernel - The MPSThreshold filter applies a fixed-level threshold to each pixel in the image. The threshold functions convert a single channel image to a binary image. If the input image is not a single channel image, convert the inputimage to a single channel luminance image using the linearGrayColorTransform and then apply the threshold. The ThresholdBinary function is: destinationPixelValue = sourcePixelValue > thresholdValue ? maximumValue : 0
- MPSImage
Threshold Binary Inverse MPSCoreandMPSImageKernelandMPSImageThresholdandMPSKernel - The MPSImageThresholdBinaryInverse filter applies a fixed-level threshold to each pixel in the image. The threshold functions convert a single channel image to a binary image. If the input image is not a single channel image, convert the inputimage to a single channel luminance image using the linearGrayColorTransform and then apply the threshold. The ThresholdBinaryInverse function is: destinationPixelValue = sourcePixelValue > thresholdValue ? 0 : maximumValue
- MPSImage
Threshold ToZero MPSCoreandMPSImageKernelandMPSImageThresholdandMPSKernel - The MPSImageThresholdToZero filter applies a fixed-level threshold to each pixel in the image. The threshold functions convert a single channel image to a binary image. If the input image is not a single channel image, convert the inputimage to a single channel luminance image using the linearGrayColorTransform and then apply the threshold. The ThresholdToZero function is: destinationPixelValue = sourcePixelValue > thresholdValue ? sourcePixelValue : 0
- MPSImage
Threshold ToZero Inverse MPSCoreandMPSImageKernelandMPSImageThresholdandMPSKernel - The MPSImageThresholdToZeroInverse filter applies a fixed-level threshold to each pixel in the image. The threshold functions convert a single channel image to a binary image. If the input image is not a single channel image, convert the inputimage to a single channel luminance image using the linearGrayColorTransform and then apply the threshold. The ThresholdToZeroINverse function is: destinationPixelValue = sourcePixelValue > thresholdValue ? 0 : sourcePixelValue
- MPSImage
Threshold Truncate MPSCoreandMPSImageKernelandMPSImageThresholdandMPSKernel - The MPSImageThresholdTruncate filter applies a fixed-level threshold to each pixel in the image: The threshold functions convert a single channel image to a binary image. If the input image is not a single channel image, convert the inputimage to a single channel luminance image using the linearGrayColorTransform and then apply the threshold. The ThresholdTruncate function is: destinationPixelValue = sourcePixelValue > thresholdValue ? thresholdValue : sourcePixelValue
- MPSImage
Transpose MPSCoreandMPSImageKernelandMPSImageTransposeandMPSKernel - The MPSImageTranspose transposes an image
- MPSImage
Type MPSKernelTypes - Apple’s documentation
- MPSInstance
Acceleration Structure Deprecated MPSAccelerationStructureandMPSCoreandMPSInstanceAccelerationStructureandMPSKernel - An acceleration structure built over instances of other acceleration structures
- MPSInteger
Division Params MPSKernelTypes - Apple’s documentation
- MPSIntersection
Data Type MPSRayIntersector - Intersection data type options
- MPSIntersection
Distance MPSRayIntersectorTypes - Returned intersection result which contains the distance from the ray origin to the intersection point
- MPSIntersection
Distance Primitive Index MPSRayIntersectorTypes - Intersection result which contains the distance from the ray origin to the intersection point and the index of the intersected primitive
- MPSIntersection
Distance Primitive Index Buffer Index MPSRayIntersectorTypes - Intersection result which contains the distance from the ray origin to the intersection point, the index of the intersected primitive, and the polygon buffer index of the intersected primitive.
- MPSIntersection
Distance Primitive Index Buffer Index Instance Index MPSRayIntersectorTypes - Intersection result which contains the distance from the ray origin to the intersection point, the index of the intersected primitive, the polygon buffer index of the intersected primitive, and the index of the intersected instance.
- MPSIntersection
Distance Primitive Index Instance Index MPSRayIntersectorTypes - Intersection result which contains the distance from the ray origin to the intersection point, the index of the intersected primitive, and the index of the intersected instance.
- MPSIntersection
Type MPSRayIntersector - Options for the MPSRayIntersector intersection type property
- MPSKernel
MPSKernel - Dependencies: This depends on Metal.framework
- MPSKernel
Options MPSCoreTypes - Apple’s documentation
- MPSKeyed
Unarchiver MPSKeyedUnarchiver - A NSKeyedArchiver that supports the MPSDeviceProvider protocol for MPSKernel decoding
- MPSLSTM
Descriptor MPSRNNLayer - Dependencies: This depends on Metal.framework
- MPSMatrix
MPSMatrix - Dependencies: This depends on Metal.framework
- MPSMatrix
Batch Normalization MPSCoreandMPSKernelandMPSMatrixandMPSMatrixBatchNormalizationandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSMatrix
Batch Normalization Gradient MPSCoreandMPSKernelandMPSMatrixandMPSMatrixBatchNormalizationandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSMatrix
Binary Kernel MPSCoreandMPSKernelandMPSMatrixTypes - Dependencies: This depends on Metal.framework
- MPSMatrix
Copy MPSCoreandMPSKernelandMPSMatrixCombination - Apple’s documentation
- MPSMatrix
Copy Descriptor MPSMatrixCombination - A list of copy operations
- MPSMatrix
Copy Offsets MPSMatrixCombination - A description of each copy operation
- MPSMatrix
Copy ToImage MPSCoreandMPSImageCopyandMPSKernel - The MPSMatrixCopyToImage copies matrix data to a MPSImage. The operation is the reverse of MPSImageCopyToMatrix.
- MPSMatrix
Decomposition Cholesky MPSCoreandMPSKernelandMPSMatrixDecompositionandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSMatrix
DecompositionLU MPSCoreandMPSKernelandMPSMatrixDecompositionandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSMatrix
Decomposition Status MPSMatrixDecomposition - Apple’s documentation
- MPSMatrix
Descriptor MPSMatrix - Dependencies: This depends on Metal.framework
- MPSMatrix
Find TopK MPSCoreandMPSKernelandMPSMatrixFindTopKandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSMatrix
Fully Connected MPSCoreandMPSKernelandMPSMatrixandMPSMatrixFullyConnectedandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSMatrix
Fully Connected Gradient MPSCoreandMPSKernelandMPSMatrixandMPSMatrixFullyConnectedandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSMatrix
LogSoft Max MPSCoreandMPSKernelandMPSMatrixSoftMaxandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSMatrix
LogSoft MaxGradient MPSCoreandMPSKernelandMPSMatrixSoftMaxandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSMatrix
Multiplication MPSCoreandMPSKernelandMPSMatrixMultiplication - Dependencies: This depends on Metal.framework.
- MPSMatrix
Neuron MPSCoreandMPSKernelandMPSMatrixandMPSMatrixNeuronandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSMatrix
Neuron Gradient MPSCoreandMPSKernelandMPSMatrixandMPSMatrixNeuronandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSMatrix
Offset MPSKernelTypes - Specifies a row and column offset into an MPSMatrix.
- MPSMatrix
Random MPSCoreandMPSKernelandMPSMatrixRandom - Kernels that implement random number generation.
- MPSMatrix
Random Distribution MPSMatrixRandom - Apple’s documentation
- MPSMatrix
Random Distribution Descriptor MPSMatrixRandom - Dependencies: This depends on Metal.framework
- MPSMatrix
RandomMTG P32 MPSCoreandMPSKernelandMPSMatrixRandom - Generates random numbers using a Mersenne Twister algorithm suitable for GPU execution. It uses a period of 2**11214. For further details see: Mutsuo Saito. A Variant of Mersenne Twister Suitable for Graphic Processors. arXiv:1005.4973
- MPSMatrix
Random Philox MPSCoreandMPSKernelandMPSMatrixRandom - Generates random numbers using a counter based algorithm. For further details see: John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel Random Numbers: As Easy as 1, 2, 3.
- MPSMatrix
Soft Max MPSCoreandMPSKernelandMPSMatrixSoftMaxandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSMatrix
Soft MaxGradient MPSCoreandMPSKernelandMPSMatrixSoftMaxandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSMatrix
Solve Cholesky MPSCoreandMPSKernelandMPSMatrixSolveandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSMatrix
SolveLU MPSCoreandMPSKernelandMPSMatrixSolveandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSMatrix
Solve Triangular MPSCoreandMPSKernelandMPSMatrixSolveandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSMatrix
Sum MPSCoreandMPSKernelandMPSMatrixSum - Dependencies: This depends on Metal.framework
- MPSMatrix
Unary Kernel MPSCoreandMPSKernelandMPSMatrixTypes - Dependencies: This depends on Metal.framework
- MPSMatrix
Vector Multiplication MPSCoreandMPSKernelandMPSMatrixMultiplicationandMPSMatrixTypes - Dependencies: This depends on Metal.framework.
- MPSND
Array MPSNDArray - A MPSNDArray object is a MTLBuffer based storage container for multi-dimensional data.
- MPSND
Array Affine Int4 Dequantize MPSCoreandMPSKernelandMPSNDArrayKernelandMPSNDArrayQuantizedMatrixMultiplication - Dependencies: This depends on Metal.framework.
- MPSND
Array Affine Quantization Descriptor MPSNDArrayQuantization - Dependencies: This depends on Metal.framework.
- MPSND
Array Binary Kernel MPSCoreandMPSKernelandMPSNDArrayKernel - Apple’s documentation
- MPSND
Array Binary Primary Gradient Kernel MPSCoreandMPSKernelandMPSNDArrayKernel - Dependencies: This depends on Metal.framework.
- MPSND
Array Binary Secondary Gradient Kernel MPSCoreandMPSKernelandMPSNDArrayKernel - Dependencies: This depends on Metal.framework.
- MPSND
Array Descriptor MPSNDArray - Dependencies: This depends on Metal.framework
- MPSND
Array Gather MPSCoreandMPSKernelandMPSNDArrayGatherandMPSNDArrayKernel - Dependencies: This depends on Metal.framework.
- MPSND
Array Gather Gradient MPSCoreandMPSKernelandMPSNDArrayGatherandMPSNDArrayKernel - Dependencies: This depends on Metal.framework.
- MPSND
Array Gather Gradient State MPSCoreandMPSNDArrayGatherandMPSNDArrayGradientStateandMPSState - at the time an -encode call was made.
- MPSND
Array Gradient State MPSCoreandMPSNDArrayGradientStateandMPSState - at the time an -encode call was made. The contents are opaque.
- MPSND
Array Identity MPSCoreandMPSKernelandMPSNDArrayIdentityandMPSNDArrayKernel - Dependencies: This depends on Metal.framework.
- MPSND
ArrayLUT Dequantize MPSCoreandMPSKernelandMPSNDArrayKernelandMPSNDArrayQuantizedMatrixMultiplication - Dependencies: This depends on Metal.framework.
- MPSND
ArrayLUT Quantization Descriptor MPSNDArrayQuantization - Dependencies: This depends on Metal.framework.
- MPSND
Array Matrix Multiplication MPSCoreandMPSKernelandMPSNDArrayKernelandMPSNDArrayMatrixMultiplication - Dependencies: This depends on Metal.framework.
- MPSND
Array Multiary Base MPSCoreandMPSKernelandMPSNDArrayKernel - Apple’s documentation
- MPSND
Array Multiary Gradient Kernel MPSCoreandMPSKernelandMPSNDArrayKernel - Apple’s documentation
- MPSND
Array Multiary Kernel MPSCoreandMPSKernelandMPSNDArrayKernel - Apple’s documentation
- MPSND
Array Offsets MPSNDArrayTypes - Apple’s documentation
- MPSND
Array Quantization Descriptor MPSNDArrayQuantization - Dependencies: This depends on Metal.framework.
- MPSND
Array Quantization Scheme MPSNDArrayQuantization - Apple’s documentation
- MPSND
Array Quantized Matrix Multiplication MPSCoreandMPSKernelandMPSNDArrayKernelandMPSNDArrayMatrixMultiplicationandMPSNDArrayQuantizedMatrixMultiplication - Dependencies: This depends on Metal.framework.
- MPSND
Array Sizes MPSNDArrayTypes - Apple’s documentation
- MPSND
Array Strided Slice MPSCoreandMPSKernelandMPSNDArrayKernelandMPSNDArrayStridedSlice - Dependencies: This depends on Metal.framework.
- MPSND
Array Strided Slice Gradient MPSCoreandMPSKernelandMPSNDArrayKernelandMPSNDArrayStridedSlice - Dependencies: This depends on Metal.framework.
- MPSND
Array Unary Gradient Kernel MPSCoreandMPSKernelandMPSNDArrayKernel - Apple’s documentation
- MPSND
Array Unary Kernel MPSCoreandMPSKernelandMPSNDArrayKernel - Apple’s documentation
- MPSND
Array VectorLUT Dequantize MPSCoreandMPSKernelandMPSNDArrayKernelandMPSNDArrayQuantizedMatrixMultiplication - Dependencies: This depends on Metal.framework.
- MPSNN
Addition Gradient Node MPSNNGraphNodes - returns gradient for either primary or secondary source image from the inference pass. Use the isSecondarySourceFilter property to indicate whether this filter is computing the gradient for the primary or secondary source image from the inference pass.
- MPSNN
Addition Node MPSNNGraphNodes - returns elementwise sum of left + right
- MPSNN
Arithmetic Gradient Node MPSNNGraphNodes - Apple’s documentation
- MPSNN
Arithmetic Gradient State Node MPSNNGraphNodes - Apple’s documentation
- MPSNN
Bilinear Scale Node MPSNNGraphNodes - A MPSNNScale object that uses bilinear interpolation for resampling
- MPSNN
Binary Arithmetic Node MPSNNGraphNodes - virtual base class for basic arithmetic nodes
- MPSNN
Binary Gradient State MPSCoreandMPSNNGradientStateandMPSState - at the time an -encode call was made. The contents are opaque.
- MPSNN
Binary Gradient State Node MPSNNGraphNodes - Apple’s documentation
- MPSNN
Compare MPSCNNKernelandMPSCNNMathandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSNN
Comparison Node MPSNNGraphNodes - returns elementwise comparison of left and right
- MPSNN
Comparison Type MPSCNNMath - Apple’s documentation
- MPSNN
Concatenation Gradient Node MPSNNGraphNodes - A MPSNNSlice filter that operates as the conjugate computation for concatentation operators during training
- MPSNN
Concatenation Node MPSNNGraphNodes - Node representing a the concatenation (in the feature channel dimension) of the results from one or more kernels
- MPSNN
Convolution Accumulator Precision Option MPSNeuralNetworkTypes - Apple’s documentation
- MPSNN
Crop AndResize Bilinear MPSCNNKernelandMPSCoreandMPSKernelandMPSNNResize - Dependencies: This depends on Metal.framework
- MPSNN
Default Padding MPSNeuralNetworkTypes - This class provides some pre-rolled padding policies for common tasks
- MPSNN
Division Node MPSNNGraphNodes - returns elementwise quotient of left / right
- MPSNN
Filter Node MPSNNGraphNodes - A placeholder node denoting a neural network filter stage
- MPSNN
Forward Loss MPSCNNKernelandMPSCNNLossandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSNN
Forward Loss Node MPSNNGraphNodes - Node representing a MPSNNForwardLosskernel
- MPSNN
Gradient Filter Node MPSNNGraphNodes - For each MPSNNFilterNode, there is a corresponding MPSNNGradientFilterNode used for training that back propagates image gradients to refine the various parameters in each node. Generally, it takes as input a gradient corresponding to the result image from the MPSNNFilterNode and returns a gradient image corresponding to the source image of the MPSNNFilterNode. In addition, there is generally a MPSNNState produced by the MPSNNFilterNode that is consumed by the MPSNNGradientNode and the MPSNNGradientNode generally needs to look at the MPSNNFilterNode source image.
- MPSNN
Gradient State MPSCoreandMPSNNGradientStateandMPSState - at the time an -encode call was made. The contents are opaque.
- MPSNN
Gradient State Node MPSNNGraphNodes - During training, each MPSNNFilterNode has a corresponding MPSNNGradientFilterNode for the gradient computation for trainable parameter update. The two communicate through a MPSNNGradientStateNode or subclass which carries information about the inference pass settings to the gradient pass. You can avoid managing these – there will be many! – by using -[MPSNNFilterNode gradientFilterWithSources:] to make the MPSNNGradientFilterNodes. That method will append the necessary extra information like MPSNNGradientState nodes and inference filter source image nodes to the object as needed.
- MPSNN
Gram Matrix Calculation MPSCNNConvolutionandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSNN
Gram Matrix Calculation Gradient MPSCNNConvolutionandMPSCNNKernelandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSNN
Gram Matrix Calculation Gradient Node MPSNNGraphNodes - Node representing a MPSNNGramMatrixCalculationGradientkernel
- MPSNN
Gram Matrix Calculation Node MPSNNGraphNodes - Node representing a MPSNNGramMatrixCalculationkernel
- MPSNN
Graph MPSCoreandMPSKernelandMPSNNGraph - Optimized representation of a graph of MPSNNImageNodes and MPSNNFilterNodes
- MPSNN
Grid Sample MPSCNNKernelandMPSCoreandMPSKernelandMPSNNGridSample - Apple’s documentation
- MPSNN
Image Node MPSNNGraphNodes - A placeholder node denoting the position of a MPSImage in a graph
- MPSNN
Initial Gradient MPSCNNKernelandMPSCNNLossandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework
- MPSNN
Initial Gradient Node MPSNNGraphNodes - A node for a MPSNNInitialGradient kernel
- MPSNN
Labels Node MPSNNGraphNodes - The labels and weights for each MPSImage are passed in separately to the graph in a MPSNNLabels object. If the batch interface is used then there will be a MPSStateBatch of these of the same size as the MPSImageBatch that holds the images. The MPSNNLabelsNode is a place holder in the graph for these nodes. The MPSNNLabels node is taken as an input to the Loss node
- MPSNN
Lanczos Scale Node MPSNNGraphNodes - A MPSNNScale object that uses the Lanczos resampling filter
- MPSNN
Local Correlation MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNLocalCorrelation filter computes the correlation between two images locally with a varying offset on x-y plane between the two source images (controlled by the window and stride properties) and the end result is summed over the feature channels. The results are stored in the different feature channels of the destination image, ordered such that the offset in the x direction is the faster running index.
- MPSNN
Loss Gradient MPSCNNKernelandMPSCNNLossandMPSCoreandMPSKernel - Dependencies: This depends on Metal.framework.
- MPSNN
Loss Gradient Node MPSNNGraphNodes - Node representing a MPSNNLossGradientkernel
- MPSNN
Multiary Gradient State MPSCoreandMPSNNGradientStateandMPSState - Apple’s documentation
- MPSNN
Multiary Gradient State Node MPSNNGraphNodes - Apple’s documentation
- MPSNN
Multiplication Gradient Node MPSNNGraphNodes - returns gradient for either primary or secondary source image from the inference pass. Use the isSecondarySourceFilter property to indicate whether this filter is computing the gradient for the primary or secondary source image from the inference pass.
- MPSNN
Multiplication Node MPSNNGraphNodes - returns elementwise product of left * right
- MPSNN
Neuron Descriptor MPSCNNNeuron - Dependencies: This depends on Metal.framework
- MPSNN
Optimizer MPSCoreandMPSKernelandMPSNNOptimizers - The MPSNNOptimizer base class, use one of the child classes, not to be directly used. Optimizers are generally used to update trainable neural network parameters. Users are usually expected to call these MPSKernels from the update methods on their Convolution or BatchNormalization data sources.
- MPSNN
Optimizer Adam MPSCoreandMPSKernelandMPSNNOptimizers - The MPSNNOptimizerAdam performs an Adam Update
- MPSNN
Optimizer Descriptor MPSNNOptimizers - The MPSNNOptimizerDescriptor base class. Optimizers are generally used to update trainable neural network parameters. Users are usually expected to call these MPSKernels from the update methods on their Convolution or BatchNormalization data sources.
- MPSNN
OptimizerRMS Prop MPSCoreandMPSKernelandMPSNNOptimizers - The MPSNNOptimizerRMSProp performs an RMSProp Update RMSProp is also known as root mean square propagation.
- MPSNN
Optimizer Stochastic Gradient Descent MPSCoreandMPSKernelandMPSNNOptimizers - The MPSNNOptimizerStochasticGradientDescent performs a gradient descent with an optional momentum Update RMSProp is also known as root mean square propagation.
- MPSNN
Pad MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReshape - Apple’s documentation
- MPSNN
PadGradient MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReshape - Dependencies: This depends on Metal.framework
- MPSNN
PadGradient Node MPSNNGraphNodes - Apple’s documentation
- MPSNN
PadNode MPSNNGraphNodes - A node for a MPSNNPad kernel
- MPSNN
Padding Method MPSNeuralNetworkTypes - Apple’s documentation
- MPSNN
Reduce Binary MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNReduce performs a reduction operation The reduction operations supported are:
- MPSNN
Reduce Column Max MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNReduceColumnMax performs a reduction operation returning the maximum value for each column of an image
- MPSNN
Reduce Column Mean MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNReduceColumnMean performs a reduction operation returning the mean value for each column of an image
- MPSNN
Reduce Column Min MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNReduceColumnMin performs a reduction operation returning the mininmum value for each column of an image
- MPSNN
Reduce Column Sum MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNReduceColumnSum performs a reduction operation returning the sum for each column of an image
- MPSNN
Reduce Feature Channels AndWeights Mean MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - Apple’s documentation
- MPSNN
Reduce Feature Channels AndWeights Sum MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - Apple’s documentation
- MPSNN
Reduce Feature Channels Argument Max MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNReduceFeatureChannelsArgumentMax performs returns the argument index that is the location of the maximum value for feature channels of an image
- MPSNN
Reduce Feature Channels Argument Min MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNReduceFeatureChannelsArgumentMin returns the argument index that is the location of the minimum value for feature channels of an image
- MPSNN
Reduce Feature Channels Max MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNReduceFeatureChannelsMax performs a reduction operation returning the maximum value for feature channels of an image
- MPSNN
Reduce Feature Channels Mean MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNReduceFeatureChannelsMean performs a reduction operation returning the mean value for each column of an image
- MPSNN
Reduce Feature Channels Min MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNReduceFeatureChannelsMin performs a reduction operation returning the mininmum value for feature channels of an image
- MPSNN
Reduce Feature Channels Sum MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNReduceFeatureChannelsSum performs a reduction operation returning the sum for each column of an image
- MPSNN
Reduce RowMax MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNReduceRowMax performs a reduction operation returning the maximum value for each row of an image
- MPSNN
Reduce RowMean MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNReduceRowMean performs a reduction operation returning the mean value for each row of an image
- MPSNN
Reduce RowMin MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNReduceRowMin performs a reduction operation returning the mininmum value for each row of an image
- MPSNN
Reduce RowSum MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNReduceRowSum performs a reduction operation returning the sum for each row of an image
- MPSNN
Reduce Unary MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReduce - The MPSNNReduce performs a reduction operation The reduction operations supported are:
- MPSNN
Reduction Column MaxNode MPSNNGraphNodes - Apple’s documentation
- MPSNN
Reduction Column Mean Node MPSNNGraphNodes - Apple’s documentation
- MPSNN
Reduction Column MinNode MPSNNGraphNodes - Apple’s documentation
- MPSNN
Reduction Column SumNode MPSNNGraphNodes - Apple’s documentation
- MPSNN
Reduction Feature Channels Argument MaxNode MPSNNGraphNodes - Apple’s documentation
- MPSNN
Reduction Feature Channels Argument MinNode MPSNNGraphNodes - Apple’s documentation
- MPSNN
Reduction Feature Channels MaxNode MPSNNGraphNodes - Apple’s documentation
- MPSNN
Reduction Feature Channels Mean Node MPSNNGraphNodes - Apple’s documentation
- MPSNN
Reduction Feature Channels MinNode MPSNNGraphNodes - Apple’s documentation
- MPSNN
Reduction Feature Channels SumNode MPSNNGraphNodes - Apple’s documentation
- MPSNN
Reduction RowMax Node MPSNNGraphNodes - Apple’s documentation
- MPSNN
Reduction RowMean Node MPSNNGraphNodes - Apple’s documentation
- MPSNN
Reduction RowMin Node MPSNNGraphNodes - Apple’s documentation
- MPSNN
Reduction RowSum Node MPSNNGraphNodes - Apple’s documentation
- MPSNN
Reduction Spatial Mean Gradient Node MPSNNGraphNodes - Apple’s documentation
- MPSNN
Reduction Spatial Mean Node MPSNNGraphNodes - Apple’s documentation
- MPSNN
Regularization Type MPSNNOptimizers - Apple’s documentation
- MPSNN
Reshape MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReshape - Apple’s documentation
- MPSNN
Reshape Gradient MPSCNNKernelandMPSCoreandMPSKernelandMPSNNReshape - Dependencies: This depends on Metal.framework
- MPSNN
Reshape Gradient Node MPSNNGraphNodes - Apple’s documentation
- MPSNN
Reshape Node MPSNNGraphNodes - A node for a MPSNNReshape kernel
- MPSNN
Resize Bilinear MPSCNNKernelandMPSCoreandMPSKernelandMPSNNResize - Dependencies: This depends on Metal.framework
- MPSNN
Scale Node MPSNNGraphNodes - Abstract Node representing a image resampling operation
- MPSNN
Slice MPSCNNKernelandMPSCoreandMPSKernelandMPSNNSlice - Apple’s documentation
- MPSNN
State Node MPSNNGraphNodes - A placeholder node denoting the position in the graph of a MPSState object
- MPSNN
Subtraction Gradient Node MPSNNGraphNodes - returns gradient for either primary or secondary source image from the inference pass. Use the isSecondarySourceFilter property to indicate whether this filter is computing the gradient for the primary or secondary source image from the inference pass.
- MPSNN
Subtraction Node MPSNNGraphNodes - returns elementwise difference of left - right
- MPSNN
Training Style MPSNeuralNetworkTypes - Apple’s documentation
- MPSNN
Unary Reduction Node MPSNNGraphNodes - A node for a unary MPSNNReduce node.
- MPSOffset
MPSCoreTypes - A signed coordinate with x, y and z components
- MPSOrigin
MPSCoreTypes - A position in an image
- MPSPacked
Float3 MPSRayIntersectorTypes - Apple’s documentation
- MPSPolygon
Acceleration Structure Deprecated MPSAccelerationStructureandMPSCoreandMPSKernelandMPSPolygonAccelerationStructure - An acceleration structure built over polygonal shapes
- MPSPolygon
Buffer Deprecated MPSPolygonBuffer - A vertex buffer and optional index and mask buffer for a set of polygons
- MPSPolygon
Type Deprecated MPSPolygonAccelerationStructure - Apple’s documentation
- MPSPredicate
MPSCommandBuffer - Dependencies: This depends on Metal.framework
- MPSPurgeable
State MPSImage - Apple’s documentation
- MPSQuadrilateral
Acceleration Structure Deprecated MPSAccelerationStructureandMPSCoreandMPSKernelandMPSPolygonAccelerationStructureandMPSQuadrilateralAccelerationStructure - An acceleration structure built over quadrilaterals
- MPSRNN
Bidirectional Combine Mode MPSRNNLayer - Apple’s documentation
- MPSRNN
Descriptor MPSRNNLayer - Dependencies: This depends on Metal.framework
- MPSRNN
Image Inference Layer MPSCNNKernelandMPSCoreandMPSKernelandMPSRNNLayer - Dependencies: This depends on Metal.framework
- MPSRNN
Matrix Id MPSRNNLayer - Apple’s documentation
- MPSRNN
Matrix Inference Layer MPSCoreandMPSKernelandMPSRNNLayer - Dependencies: This depends on Metal.framework
- MPSRNN
Matrix Training Layer MPSCoreandMPSKernelandMPSRNNLayer - Dependencies: This depends on Metal.framework
- MPSRNN
Matrix Training State MPSCoreandMPSRNNLayerandMPSState - Dependencies: This depends on Metal.framework
- MPSRNN
Recurrent Image State MPSCoreandMPSRNNLayerandMPSState - Dependencies: This depends on Metal.framework
- MPSRNN
Recurrent Matrix State MPSCoreandMPSRNNLayerandMPSState - Dependencies: This depends on Metal.framework
- MPSRNN
Sequence Direction MPSRNNLayer - Apple’s documentation
- MPSRNN
Single Gate Descriptor MPSRNNLayer - Dependencies: This depends on Metal.framework
- MPSRay
Data Type MPSRayIntersector - Options for the MPSRayIntersector ray data type property
- MPSRay
Intersector Deprecated MPSCoreandMPSKernelandMPSRayIntersector - Performs intersection tests between rays and the geometry in an MPSAccelerationStructure
- MPSRay
Mask Operator Deprecated MPSRayIntersector - Options for the MPSRayIntersector ray mask operator property
- MPSRay
Mask Options Deprecated MPSRayIntersector - Options for the MPSRayIntersector ray mask options property
- MPSRay
Origin Mask Direction MaxDistance MPSRayIntersectorTypes - Represents a 3D ray with an origin, a direction, and a mask to filter out intersections
- MPSRay
Origin MinDistance Direction MaxDistance MPSRayIntersectorTypes - Represents a 3D ray with an origin, a direction, and an intersection distance range from the origin
- MPSRay
Packed Origin Direction MPSRayIntersectorTypes - Represents a 3D ray with an origin and a direction
- MPSRegion
MPSCoreTypes - A region of an image
- MPSSVGF
MPSCoreandMPSKernelandMPSSVGF - Reduces noise in images rendered with Monte Carlo ray tracing methods
- MPSSVGF
Default Texture Allocator MPSSVGF - A default implementation of the MPSSVGFTextureAllocator protocol. Maintains a cache of textures which is checked first when a texture is requested. If there is no suitable texture in the cache, allocates a texture directly from the Metal device.
- MPSSVGF
Denoiser MPSSVGF - A convenience object which uses an MPSSVGF object to manage the denoising process
- MPSScale
Transform MPSCoreTypes - Transform matrix for explict control over resampling in MPSImageScale.
- MPSSize
MPSCoreTypes - A size of a region in an image
- MPSState
MPSState - Dependencies: This depends on Metal Framework
- MPSState
Resource List MPSState - Apple’s documentation
- MPSState
Resource Type MPSState - Apple’s documentation
- MPSState
Texture Info MPSState - Apple’s documentation
- MPSTemporalAA
MPSCoreandMPSKernelandMPSTemporalAA - Reduces aliasing in an image by accumulating samples over multiple frames
- MPSTemporal
Weighting MPSSVGF - Controls how samples are weighted over time
- MPSTemporary
Image MPSImage - Dependencies: MPSImage
- MPSTemporary
Matrix MPSMatrix - A MPSMatrix allocated on GPU private memory.
- MPSTemporaryND
Array MPSNDArray - A MPSNDArray that uses command buffer specific memory to store the array data
- MPSTemporary
Vector MPSMatrix - A MPSVector allocated on GPU private memory.
- MPSTransform
Type MPSInstanceAccelerationStructure - Instance transformation type options
- MPSTriangle
Acceleration Structure Deprecated MPSAccelerationStructureandMPSCoreandMPSKernelandMPSPolygonAccelerationStructureandMPSTriangleAccelerationStructure - An acceleration structure built over triangles
- MPSTriangle
Intersection Test Type Deprecated MPSRayIntersector - Options for the MPSRayIntersector triangle intersection test type property
- MPSUnary
Image Kernel MPSCoreandMPSImageKernelandMPSKernel - Dependencies: This depends on Metal.framework
- MPSVector
MPSMatrix - Dependencies: This depends on Metal.framework
- MPSVector
Descriptor MPSMatrix - Dependencies: This depends on Metal.framework
Constants§
- MPSBatch
Size Index MPSFunctionConstantIndices - Apple’s documentation
- MPSDevice
Caps Index MPSFunctionConstantIndices - Apple’s documentation
- MPSFunction
Constant Index MPSFunctionConstantIndices - Apple’s documentation
- MPSFunction
Constant Index Reserved MPSFunctionConstantIndices - Apple’s documentation
- MPSND
Array Constant Index MPSFunctionConstantIndices - Apple’s documentation
- MPSND
Array Constant Multi Dest DstAddressing Index MPSFunctionConstantIndices - Apple’s documentation
- MPSND
Array Constant Multi Dest Index MPSFunctionConstantIndices - Apple’s documentation
- MPSND
Array Constant Multi Dest Index0 MPSFunctionConstantIndices - Apple’s documentation
- MPSND
Array Constant Multi Dest Index1 MPSFunctionConstantIndices - Apple’s documentation
- MPSND
Array Constant Multi Dest SrcAddressing Index MPSFunctionConstantIndices - Apple’s documentation
- MPSTexture
Linking Constant Index MPSFunctionConstantIndices - Apple’s documentation
- MPSUser
Available Function Constant Start Index MPSFunctionConstantIndices - Apple’s documentation
- MPSUser
Constant Index MPSFunctionConstantIndices - Apple’s documentation
Statics§
- MPSFunction
Constant None MPSKernelTypes - Apple’s documentation
- MPSRect
NoClip ⚠MPSCoreTypes - This is a special constant to indicate no clipping is to be done. The entire image will be used. This is the default clipping rectangle or the input extent for MPSKernels.
Traits§
- MPSCNN
Batch Normalization Data Source MPSCNNBatchNormalization - The MPSCNNBatchNormalizationDataSource protocol declares the methods that an instance of MPSCNNBatchNormalizationState uses to initialize the scale factors, bias terms, and batch statistics.
- MPSCNN
Convolution Data Source MPSCNNConvolution - Provides convolution filter weights and bias terms
- MPSCNN
Group Normalization Data Source MPSCNNGroupNormalization - The MPSCNNGroupNormalizationDataSource protocol declares the methods that an group of MPSCNNGroupNormalization uses to initialize the scale factors (gamma) and bias terms (beta).
- MPSCNN
Instance Normalization Data Source MPSCNNInstanceNormalization - The MPSCNNInstanceNormalizationDataSource protocol declares the methods that an instance of MPSCNNInstanceNormalization uses to initialize the scale factors (gamma) and bias terms (beta).
- MPSDevice
Provider MPSCoreTypes - A way of extending a NSCoder to enable the setting of MTLDevice for unarchived objects
- MPSHandle
MPSNNGraphNodes - MPS resource identification
- MPSHeap
Provider MPSCommandBuffer - Apple’s documentation
- MPSImage
Allocator MPSImage - A class that allocates new MPSImage or MPSTemporaryImage
- MPSImage
Size Encoding State MPSNeuralNetworkTypes - MPSStates conforming to this protocol contain information about a image size elsewhere in the graph
- MPSImage
Transform Provider MPSNNGraphNodes - Apple’s documentation
- MPSND
Array Allocator MPSNDArray - Apple’s documentation
- MPSNN
Gram Matrix Callback MPSNNGraphNodes - MPSNNGramMatrixCallback Defines a callback protocol for MPSNNGramMatrixCalculationNodeto set the ‘alpha’ scaling value dynamically just before encoding the underlying MPSNNGramMatrixCalculation kernel.
- MPSNN
Loss Callback MPSNNGraphNodes - MPSNNLossCallback Defines a callback protocol for MPSNNForwardLossNodeand MPSNNLossGradientNodeto set the scalar weight value just before encoding the underlying kernels.
- MPSNN
Padding MPSNeuralNetworkTypes - A method to describe how MPSCNNKernels should pad images when data outside the image is needed
- MPSNN
Trainable Node MPSNNGraphNodes - Apple’s documentation
- MPSSVGF
Texture Allocator MPSSVGF - Protocol dictating how texture allocator objects should operate so that they can be used by an MPSSVGFDenoiser object to allocate and reuse intermediate and output textures during the denoising process.
Functions§
- MPSGet
Image ⚠Type MPSImageandMPSKernelTypes - MPSGet
Preferred ⚠Device - Identify the preferred device for MPS computation
- MPSHint
Temporary ⚠Memory High Water Mark - Hint to MPS how much memory your application expects to need for the command buffer
- MPSImage
Batch ⚠Increment Read Count Deprecated MPSImage - MPSImage
Batch ⚠Iterate Deprecated MPSImageandblock2 - MPSImage
Batch ⚠Resource Size Deprecated MPSImage - MPSImage
Batch ⚠Synchronize Deprecated MPSImage - MPSSet
Heap ⚠Cache Duration - Set the timeout after which unused cached MTLHeaps are released
- MPSState
Batch ⚠Increment Read Count Deprecated MPSState - MPSState
Batch ⚠Resource Size Deprecated MPSState - MPSState
Batch ⚠Synchronize Deprecated MPSState - MPSSupportsMTL
Device ⚠ - MPSSupportsMTLDevice
Type Aliases§
- MPSAcceleration
Structure Completion Handler Deprecated MPSAccelerationStructureandMPSCoreandMPSKernelandblock2 - A block of code invoked when an operation on an MPSAccelerationStructure is completed
- MPSCNN
Arithmetic Gradient State Batch MPSCNNMathandMPSCoreandMPSNNGradientStateandMPSState - Apple’s documentation
- MPSCNN
Convolution Gradient State Batch MPSCNNConvolutionandMPSCoreandMPSNNGradientStateandMPSState - Apple’s documentation
- MPSCNN
Convolution Transpose Gradient State Batch MPSCNNConvolutionandMPSCoreandMPSNNGradientStateandMPSState - Apple’s documentation
- MPSCNN
Dropout Gradient State Batch MPSCNNDropoutandMPSCoreandMPSNNGradientStateandMPSState - Apple’s documentation
- MPSCNN
Group Normalization Gradient State Batch MPSCNNGroupNormalizationandMPSCoreandMPSNNGradientStateandMPSState - Apple’s documentation
- MPSCNN
Instance Normalization Gradient State Batch MPSCNNInstanceNormalizationandMPSCoreandMPSNNGradientStateandMPSState - Apple’s documentation
- MPSCNN
Loss Labels Batch MPSCNNLossandMPSCoreandMPSState - Apple’s documentation
- MPSCopy
Allocator MPSCoreandMPSImageKernelandMPSKernelandblock2 - Apple’s documentation
- MPSDevice
Caps MPSKernelTypes - Apple’s documentation
- MPSFunction
Constant MPSKernelTypes - Apple’s documentation
- MPSFunction
Constant InMetal MPSKernelTypes - Apple’s documentation
- MPSGradient
Node Block MPSNNGraphNodesandblock2 - Block callback for customizing gradient nodes as they are constructed
- MPSImage
Batch MPSImageandMPSCore - Apple’s documentation
- MPSNN
Binary Gradient State Batch MPSCoreandMPSNNGradientStateandMPSState - Apple’s documentation
- MPSNN
Gradient State Batch MPSCoreandMPSNNGradientStateandMPSState - Apple’s documentation
- MPSNN
Graph Completion Handler MPSCoreandMPSImageandMPSNNGraphandblock2 - A notification when computeAsyncWithSourceImages:completionHandler: has finished
- MPSNN
Multiary Gradient State Batch MPSCoreandMPSNNGradientStateandMPSState - Apple’s documentation
- MPSShape
MPSCoreTypes - An array of NSNumbers where dimension lengths provided by the user goes from slowest moving to fastest moving dimension. This is same order as MLMultiArray in coreML and most frameworks in Python.
- MPSState
Batch MPSState - Apple’s documentation