Expand description
§Bindings to the MetalPerformanceShaders
framework
See Apple’s docs and the general docs on framework crates for more information.
Structs§
- MPSAcceleration
Structure Deprecated MPSAccelerationStructure
andMPSRayIntersector
andMPSCore
andMPSKernel
- A data structure built over geometry used to accelerate ray tracing
- MPSAcceleration
Structure Group Deprecated MPSAccelerationStructureGroup
andMPSRayIntersector
- A group of acceleration structures which may be used together in an instance acceleration structure.
- MPSAcceleration
Structure Status Deprecated MPSAccelerationStructure
andMPSRayIntersector
- Possible values of the acceleration structure status property
- MPSAcceleration
Structure Usage Deprecated MPSAccelerationStructure
andMPSRayIntersector
- Options describing how an acceleration structure will be used
- MPSAliasing
Strategy MPSCoreTypes
andMPSCore
- Apple’s documentation
- MPSAlpha
Type MPSImageTypes
andMPSImage
- Apple’s documentation
- MPSBinary
Image Kernel MPSImageKernel
andMPSImage
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSBounding
BoxIntersection Test Type Deprecated MPSRayIntersector
- Options for the MPSRayIntersector bounding box intersection test type property
- MPSCNN
Add MPSCNNMath
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSCNN
AddGradient MPSCNNMath
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSCNN
Arithmetic MPSCNNMath
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Arithmetic Gradient MPSCNNMath
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Arithmetic Gradient State MPSCNNMath
andMPSNeuralNetwork
andMPSCore
andMPSNNGradientState
andMPSState
- Dependencies: This depends on Metal.framework.
- MPSCNN
Batch Normalization MPSCNNBatchNormalization
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Batch Normalization Flags MPSNeuralNetworkTypes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Batch Normalization Gradient MPSCNNBatchNormalization
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Batch Normalization Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing batch normalization gradient for training
- MPSCNN
Batch Normalization Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing batch normalization for inference or training
- MPSCNN
Batch Normalization State MPSCNNBatchNormalization
andMPSNeuralNetwork
andMPSCore
andMPSNNGradientState
andMPSState
- MPSCNNBatchNormalizationState encapsulates the data necessary to execute batch normalization.
- MPSCNN
Batch Normalization Statistics MPSCNNBatchNormalization
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Batch Normalization Statistics Gradient MPSCNNBatchNormalization
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Binary Convolution MPSCNNConvolution
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Binary Convolution Flags MPSNeuralNetworkTypes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Binary Convolution Node MPSNNGraphNodes
andMPSNeuralNetwork
- A MPSNNFilterNode representing a MPSCNNBinaryConvolution kernel
- MPSCNN
Binary Convolution Type MPSNeuralNetworkTypes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Binary Fully Connected MPSCNNConvolution
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Binary Fully Connected Node MPSNNGraphNodes
andMPSNeuralNetwork
- A MPSNNFilterNode representing a MPSCNNBinaryFullyConnected kernel
- MPSCNN
Binary Kernel MPSCNNKernel
andMPSNeuralNetwork
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Convolution MPSCNNConvolution
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Convolution Descriptor MPSCNNConvolution
andMPSNeuralNetwork
- Dependencies: This depends on Metal.framework
- MPSCNN
Convolution Flags MPSNeuralNetworkTypes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Convolution Gradient MPSCNNConvolution
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Convolution Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Convolution Gradient Option MPSCNNConvolution
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Convolution Gradient State MPSCNNConvolution
andMPSNeuralNetwork
andMPSCore
andMPSNNGradientState
andMPSState
- The MPSCNNConvolutionGradientState is returned by resultStateForSourceImage:sourceStates method on MPSCNNConvolution object. Note that resultStateForSourceImage:sourceStates:destinationImage creates the object on autoreleasepool. It will be consumed by MPSCNNConvolutionGradient. This is also used by MPSCNNConvolutionTranspose encode call that returns MPSImage on left hand side to correctly size the destination. Note that state objects are not usable across batches i.e. when batch is done you should nuke the state object and create new one for next batch.
- MPSCNN
Convolution Gradient State Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Convolution Node MPSNNGraphNodes
andMPSNeuralNetwork
- A MPSNNFilterNode representing a MPSCNNConvolution kernel
- MPSCNN
Convolution Transpose MPSCNNConvolution
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Convolution Transpose Gradient MPSCNNConvolution
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Convolution Transpose Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Convolution Transpose Gradient State MPSCNNConvolution
andMPSNeuralNetwork
andMPSCore
andMPSNNGradientState
andMPSState
- The MPSCNNConvolutionTransposeGradientState is returned by resultStateForSourceImage:sourceStates method on MPSCNNConvolutionTranspose object. Note that resultStateForSourceImage:sourceStates:destinationImage creates the object on autoreleasepool. It will be consumed by MPSCNNConvolutionTransposeGradient. It contains reference to MPSCNNConvolutionGradientState object that connects MPSCNNConvolution and its corresponding MPSCNNConvolutionTranspose in forward pass of autoencoder. In an autoencoder forward pass, MPSCNNConvolutionGradientState is produced by MPSCNNConvolution object and is used by corresponding MPSCNNConvolutionTraspose of forward pass that “undo” the corresponding MPSCNNConvolution. It is used to correctly size destination image that is returned on left hand side by encode call MPSCNNConvolutionTranspose as well as automatically set kernelOffsetX/Y on MPSCNNConvolutionTranspose using the offset and other properties of corresponding MPSCNNConvolution object. During training, same MPSCNNConvolutionGradientState object will be consumed by MPSCNNConvolutionGradient object and the MPSCNNConvolutionTransposeGradientState produced by MPSCNNConvolutionTranspose’s resultStateForSourceImage:sourceStates:destinationImage will be consumed by MPSCNNConvolutionTransposeGradient object
- MPSCNN
Convolution Transpose Gradient State Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Convolution Transpose Node MPSNNGraphNodes
andMPSNeuralNetwork
- A MPSNNFilterNode representing a MPSCNNConvolutionTranspose kernel
- MPSCNN
Convolution Weights AndBiases State MPSCNNConvolution
andMPSNeuralNetwork
andMPSCore
andMPSState
- The MPSCNNConvolutionWeightsAndBiasesState is returned by exportWeightsAndBiasesWithCommandBuffer: method on MPSCNNConvolution object. This is mainly used for GPU side weights/biases update process. During training, application can keep a copy of weights, velocity, momentum MTLBuffers in its data source, update the weights (in-place or out of place) with gradients obtained from MPSCNNConvolutionGradientState and call [MPSCNNConvolution reloadWeightsAndBiasesWithCommandBuffer] with resulting updated MTLBuffer. If application does not want to keep a copy of weights/biases, it can call [MPSCNNConvolution exportWeightsAndBiasesWithCommandBuffer:] to get the current weights from convolution itself, do the updated and call reloadWithCommandBuffer.
- MPSCNN
Convolution Weights Layout MPSCNNConvolution
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Cross Channel Normalization MPSCNNNormalization
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Cross Channel Normalization Gradient MPSCNNNormalization
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Cross Channel Normalization Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Cross Channel Normalization Node MPSNNGraphNodes
andMPSNeuralNetwork
- Node representing MPSCNNCrossChannelNormalization
- MPSCNN
Depth Wise Convolution Descriptor MPSCNNConvolution
andMPSNeuralNetwork
- MPSCNNDepthWiseConvolutionDescriptor can be used to create MPSCNNConvolution object that does depthwise convolution
- MPSCNN
Dilated Pooling Max MPSCNNPooling
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Dilated Pooling MaxGradient MPSCNNPooling
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Dilated Pooling MaxGradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Dilated Pooling MaxNode MPSNNGraphNodes
andMPSNeuralNetwork
- A node for a MPSCNNDilatedPooling kernel
- MPSCNN
Divide MPSCNNMath
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSCNN
Dropout MPSCNNDropout
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Dropout Gradient MPSCNNDropout
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Dropout Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Dropout Gradient State MPSCNNDropout
andMPSNeuralNetwork
andMPSCore
andMPSNNGradientState
andMPSState
- Dependencies: This depends on Metal.framework.
- MPSCNN
Dropout Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Fully Connected MPSCNNConvolution
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Fully Connected Gradient MPSCNNConvolution
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Fully Connected Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Fully Connected Node MPSNNGraphNodes
andMPSNeuralNetwork
- A MPSNNFilterNode representing a MPSCNNFullyConnected kernel
- MPSCNN
Gradient Kernel MPSCNNKernel
andMPSNeuralNetwork
andMPSCore
andMPSKernel
- Gradient kernels are the backwards pass of a MPSCNNKernel used during training to calculate gradient back propagation. These take as arguments the gradient result from the next filter and the source image for the forward version of the filter. There is also a MPSNNGradientState passed from MPSCNNKernel to MPSCNNGradientKernel that contains information about the MPSCNNKernel parameters at the time it encoded and possibly also additional MTLResources to enable it to do its job.
- MPSCNN
Group Normalization MPSCNNGroupNormalization
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Group Normalization Gradient MPSCNNGroupNormalization
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Group Normalization Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Group Normalization Gradient State MPSCNNGroupNormalization
andMPSNeuralNetwork
andMPSCore
andMPSNNGradientState
andMPSState
- Dependencies: This depends on Metal.framework
- MPSCNN
Group Normalization Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Instance Normalization MPSCNNInstanceNormalization
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Instance Normalization Gradient MPSCNNInstanceNormalization
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Instance Normalization Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Instance Normalization Gradient State MPSCNNInstanceNormalization
andMPSNeuralNetwork
andMPSCore
andMPSNNGradientState
andMPSState
- Dependencies: This depends on Metal.framework
- MPSCNN
Instance Normalization Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Kernel MPSCNNKernel
andMPSNeuralNetwork
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Local Contrast Normalization MPSCNNNormalization
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Local Contrast Normalization Gradient MPSCNNNormalization
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Local Contrast Normalization Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Local Contrast Normalization Node MPSNNGraphNodes
andMPSNeuralNetwork
- Node representing MPSCNNLocalContrastNormalization
- MPSCNN
LogSoft Max MPSCNNSoftMax
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
LogSoft MaxGradient MPSCNNSoftMax
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
LogSoft MaxGradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Node representing a MPSCNNLogSoftMaxGradient kernel
- MPSCNN
LogSoft MaxNode MPSNNGraphNodes
andMPSNeuralNetwork
- Node representing a MPSCNNLogSoftMax kernel
- MPSCNN
Loss MPSCNNLoss
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSCNN
Loss Data Descriptor MPSCNNLoss
andMPSNeuralNetwork
- Dependencies: This depends on Metal.framework.
- MPSCNN
Loss Descriptor MPSCNNLoss
andMPSNeuralNetwork
- Dependencies: This depends on Metal.framework.
- MPSCNN
Loss Labels MPSCNNLoss
andMPSNeuralNetwork
andMPSCore
andMPSState
- Dependencies: This depends on Metal.framework.
- MPSCNN
Loss Node MPSNNGraphNodes
andMPSNeuralNetwork
- This node calculates loss information during training typically immediately after the inference portion of network evaluation is performed. The result image of the loss operations is typically the first gradient image to be comsumed by the gradient passes that work their way back up the graph. In addition, the node will update the loss image in the MPSNNLabels with the desired estimate of correctness.
- MPSCNN
Loss Type MPSCNNTypes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Multiary Kernel MPSCNNKernel
andMPSNeuralNetwork
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Multiply MPSCNNMath
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSCNN
Multiply Gradient MPSCNNMath
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSCNN
Neuron MPSCNNNeuron
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Neuron Absolute MPSCNNNeuron
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Neuron Absolute Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNNeuronAbsolute kernel
- MPSCNN
NeuronELU MPSCNNNeuron
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
NeuronELU Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNNeuronELU kernel
- MPSCNN
Neuron Exponential MPSCNNNeuron
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSCNN
Neuron Exponential Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNNeuronExponential kernel
- MPSCNN
Neuron GeLU Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNNeuronGeLU kernel
- MPSCNN
Neuron Gradient MPSCNNNeuron
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Neuron Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNNeuronGradient
- MPSCNN
Neuron Hard Sigmoid MPSCNNNeuron
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Neuron Hard Sigmoid Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNNeuronHardSigmoid kernel
- MPSCNN
Neuron Linear MPSCNNNeuron
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Neuron Linear Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNNeuronLinear kernel
- MPSCNN
Neuron Logarithm MPSCNNNeuron
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSCNN
Neuron Logarithm Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNNeuronLogarithm kernel
- MPSCNN
Neuron Node MPSNNGraphNodes
andMPSNeuralNetwork
- virtual base class for MPSCNNNeuron nodes
- MPSCNN
NeuronP ReLU MPSCNNNeuron
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
NeuronP ReLU Node MPSNNGraphNodes
andMPSNeuralNetwork
- A ReLU node with parameter a provided independently for each feature channel
- MPSCNN
Neuron Power MPSCNNNeuron
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSCNN
Neuron Power Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNNeuronPower kernel
- MPSCNN
Neuron ReLU MPSCNNNeuron
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Neuron ReLUN MPSCNNNeuron
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Neuron ReLUN Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNNeuronReLUN kernel
- MPSCNN
Neuron ReLU Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNNeuronReLU kernel
- MPSCNN
Neuron Sigmoid MPSCNNNeuron
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Neuron Sigmoid Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNNeuronSigmoid kernel
- MPSCNN
Neuron Soft Plus MPSCNNNeuron
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Neuron Soft Plus Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNNeuronSoftPlus kernel
- MPSCNN
Neuron Soft Sign MPSCNNNeuron
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Neuron Soft Sign Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNNeuronSoftSign kernel
- MPSCNN
Neuron TanH MPSCNNNeuron
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Neuron TanH Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNNeuronTanH kernel
- MPSCNN
Neuron Type MPSCNNNeuronType
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Normalization Gamma AndBeta State MPSCNNNormalizationWeights
andMPSNeuralNetwork
andMPSCore
andMPSState
- A state which contains gamma and beta terms used to apply a scale and bias in either an MPSCNNInstanceNormalization or MPSCNNBatchNormalization operation.
- MPSCNN
Normalization Mean AndVariance State MPSCNNBatchNormalization
andMPSNeuralNetwork
andMPSCore
andMPSState
- A state which contains mean and variance terms used to apply a normalization in a MPSCNNBatchNormalization operation.
- MPSCNN
Normalization Node MPSNNGraphNodes
andMPSNeuralNetwork
- virtual base class for CNN normalization nodes
- MPSCNN
Pooling MPSCNNPooling
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Pooling Average MPSCNNPooling
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Pooling Average Gradient MPSCNNPooling
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Pooling Average Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Pooling Average Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNPoolingAverage kernel
- MPSCNN
Pooling Gradient MPSCNNPooling
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Pooling Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Pooling L2Norm MPSCNNPooling
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Pooling L2Norm Gradient MPSCNNPooling
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Pooling L2Norm Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Pooling L2Norm Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNPoolingL2Norm kernel
- MPSCNN
Pooling Max MPSCNNPooling
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Pooling MaxGradient MPSCNNPooling
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Pooling MaxGradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Pooling MaxNode MPSNNGraphNodes
andMPSNeuralNetwork
- A node representing a MPSCNNPoolingMax kernel
- MPSCNN
Pooling Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node for a MPSCNNPooling kernel
- MPSCNN
Reduction Type MPSCNNTypes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Soft Max MPSCNNSoftMax
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Soft MaxGradient MPSCNNSoftMax
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Soft MaxGradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Node representing a MPSCNNSoftMaxGradient kernel
- MPSCNN
Soft MaxNode MPSNNGraphNodes
andMPSNeuralNetwork
- Node representing a MPSCNNSoftMax kernel
- MPSCNN
Spatial Normalization MPSCNNNormalization
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Spatial Normalization Gradient MPSCNNNormalization
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Spatial Normalization Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNN
Spatial Normalization Node MPSNNGraphNodes
andMPSNeuralNetwork
- Node representing MPSCNNSpatialNormalization
- MPSCNN
SubPixel Convolution Descriptor MPSCNNConvolution
andMPSNeuralNetwork
- MPSCNNSubPixelConvolutionDescriptor can be used to create MPSCNNConvolution object that does sub pixel upsamling and reshaping opeartion as described in http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shi_Real-Time_Single_Image_CVPR_2016_paper.pdf
- MPSCNN
Subtract MPSCNNMath
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSCNN
Subtract Gradient MPSCNNMath
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSCNN
Upsampling MPSCNNUpsampling
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Upsampling Bilinear MPSCNNUpsampling
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSCNN
Upsampling Bilinear Gradient MPSCNNUpsampling
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSCNN
Upsampling Bilinear Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Node representing a MPSCNNUpsamplingBilinear kernel
- MPSCNN
Upsampling Bilinear Node MPSNNGraphNodes
andMPSNeuralNetwork
- Node representing a MPSCNNUpsamplingBilinear kernel
- MPSCNN
Upsampling Gradient MPSCNNUpsampling
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSCNN
Upsampling Nearest MPSCNNUpsampling
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSCNN
Upsampling Nearest Gradient MPSCNNUpsampling
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSCNN
Upsampling Nearest Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Node representing a MPSCNNUpsamplingNearest kernel
- MPSCNN
Upsampling Nearest Node MPSNNGraphNodes
andMPSNeuralNetwork
- Node representing a MPSCNNUpsamplingNearest kernel
- MPSCNN
Weights Quantization Type MPSCNNConvolution
andMPSNeuralNetwork
- Apple’s documentation
- MPSCNNYOLO
Loss MPSCNNLoss
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Apple’s documentation
- MPSCNNYOLO
Loss Descriptor MPSCNNLoss
andMPSNeuralNetwork
- Dependencies: This depends on Metal.framework.
- MPSCNNYOLO
Loss Node MPSNNGraphNodes
andMPSNeuralNetwork
- This node calculates loss information during training typically immediately after the inference portion of network evaluation is performed. The result image of the loss operations is typically the first gradient image to be comsumed by the gradient passes that work their way back up the graph. In addition, the node will update the loss image in the MPSNNLabels with the desired estimate of correctness.
- MPSCommand
Buffer MPSCommandBuffer
andMPSCore
- Dependencies: This depends on Metal.framework
- MPSCustom
Kernel Argument Count MPSKernelTypes
andMPSCore
- Apple’s documentation
- MPSCustom
Kernel Index MPSKernelTypes
andMPSCore
- Apple’s documentation
- MPSData
Layout MPSImage
andMPSCore
- Apple’s documentation
- MPSData
Type MPSCoreTypes
andMPSCore
- Apple’s documentation
- MPSDevice
Caps Values MPSKernelTypes
andMPSCore
- Apple’s documentation
- MPSDevice
Options - Apple’s documentation
- MPSDimension
Slice MPSCoreTypes
andMPSCore
- Describes a sub-region of an array dimension
- MPSFloat
Data Type Bit MPSCoreTypes
andMPSCore
- Apple’s documentation
- MPSFloat
Data Type Shift MPSCoreTypes
andMPSCore
- Apple’s documentation
- MPSGRU
Descriptor MPSRNNLayer
andMPSNeuralNetwork
- Dependencies: This depends on Metal.framework
- MPSImage
MPSImage
andMPSCore
- Dependencies: This depends on Metal.framework
- MPSImage
Add MPSImageMath
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSImage
Area Max MPSImageMorphology
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageAreaMax kernel finds the maximum pixel value in a rectangular region centered around each pixel in the source image. If there are multiple channels in the source image, each channel is processed independently. The edgeMode property is assumed to always be MPSImageEdgeModeClamp for this filter.
- MPSImage
Area Min MPSImageMorphology
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageAreaMin finds the minimum pixel value in a rectangular region centered around each pixel in the source image. If there are multiple channels in the source image, each channel is processed independently. It has the same methods as MPSImageAreaMax The edgeMode property is assumed to always be MPSImageEdgeModeClamp for this filter.
- MPSImage
Arithmetic MPSImageMath
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSImage
Bilinear Scale MPSImageResampling
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- Resize an image and / or change its aspect ratio
- MPSImage
Box MPSImageConvolution
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageBox convolves an image with given filter of odd width and height. The kernel elements all have equal weight, achieving a blur effect. (Each result is the unweighted average of the surrounding pixels.) This allows for much faster algorithms, espcially for larger blur radii. The box height and width must be odd numbers. The box blur is a separable filter. The implementation is aware of this and will act accordingly to give best performance for multi-dimensional blurs.
- MPSImage
Canny MPSImageConvolution
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageCanny implements the Canny edge detection algorithm. When the color model of the source and destination textures match, the filter is applied to each channel seperately. If the destination is monochrome but source multichannel, the source will be converted to grayscale using the linear gray color transform vector (v). Luminance = v[0] * pixel.x + v[1] * pixel.y + v[2] * pixel.z;
- MPSImage
Conversion MPSImageConversion
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageConversion filter performs a conversion from source to destination
- MPSImage
Convolution MPSImageConvolution
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageConvolution convolves an image with given filter of odd width and height. The center of the kernel aligns with the MPSImageConvolution.offset. That is, the position of the top left corner of the area covered by the kernel is given by MPSImageConvolution.offset - {kernel_width>>1, kernel_height>>1, 0}
- MPSImage
Coordinate MPSCoreTypes
andMPSCore
- A unsigned coordinate with x, y and channel components
- MPSImage
Copy ToMatrix MPSImageCopy
andMPSImage
andMPSCore
andMPSKernel
- The MPSImageCopyToMatrix copies image data to a MPSMatrix. The image data is stored in a row of a matrix. The dataLayout specifies the order in which the feature channels in the MPSImage get stored in the matrix. If MPSImage stores a batch of images, the images are copied into multiple rows, one row per image.
- MPSImage
Descriptor MPSImage
andMPSCore
- Dependencies: This depends on Metal.framework
- MPSImage
Dilate MPSImageMorphology
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageDilate finds the maximum pixel value in a rectangular region centered around each pixel in the source image. It is like the MPSImageAreaMax, except that the intensity at each position is calculated relative to a different value before determining which is the maximum pixel value, allowing for shaped, non-rectangular morphological probes.
- MPSImage
Divide MPSImageMath
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSImageED
Lines MPSImageEDLines
andMPSImage
andMPSCore
andMPSKernel
- The MPSImageEDLInes class implements the EDLines line segmenting algorithm using edge-drawing (ED) described here https://ieeexplore.ieee.org/document/6116138
- MPSImage
Edge Mode MPSCoreTypes
andMPSCore
- Apple’s documentation
- MPSImage
Erode MPSImageMorphology
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageErode filter finds the minimum pixel value in a rectangular region centered around each pixel in the source image. It is like the MPSImageAreaMin, except that the intensity at each position is calculated relative to a different value before determining which is the maximum pixel value, allowing for shaped, non-rectangular morphological probes.
- MPSImage
Euclidean Distance Transform MPSImageDistanceTransform
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- Perform a Euclidean Distance Transform
- MPSImage
Feature Channel Format MPSCoreTypes
andMPSCore
- Apple’s documentation
- MPSImage
Find Keypoints MPSImageKeypoint
andMPSImage
andMPSCore
andMPSKernel
- The MPSImageFindKeypoints kernel is used to find a list of keypoints whose values are >= minimumPixelThresholdValue in MPSImageKeypointRangeInfo. The keypoints are generated for a specified region in the image. The pixel format of the source image must be MTLPixelFormatR8Unorm.
- MPSImage
Gaussian Blur MPSImageConvolution
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageGaussianBlur convolves an image with gaussian of given sigma in both x and y direction.
- MPSImage
Gaussian Pyramid MPSImageConvolution
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- A Gaussian image pyramid is constructed as follows: The mipmap level zero is the source of the operation and is left untouched and the subsequent mipmap levels are constructed from it recursively:
- MPSImage
Guided Filter MPSImageGuidedFilter
andMPSImage
andMPSCore
andMPSKernel
- Perform Guided Filter to produce a coefficients image The filter is broken into two stages:
- MPSImage
Histogram MPSImageHistogram
andMPSImage
andMPSCore
andMPSKernel
- The MPSImageHistogram computes the histogram of an image.
- MPSImage
Histogram Equalization MPSImageHistogram
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageHistogramEqualization performs equalizes the histogram of an image. The process is divided into three steps.
- MPSImage
Histogram Specification MPSImageHistogram
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageHistogramSpecification performs a histogram specification operation on an image. It is a generalized version of histogram equalization operation. The histogram specificaiton filter converts the image so that its histogram matches the desired histogram.
- MPSImage
Integral MPSImageIntegral
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageIntegral calculates the sum of pixels over a specified region in the image. The value at each position is the sum of all pixels in a source image rectangle, sumRect:
- MPSImage
Integral OfSquares MPSImageIntegral
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageIntegralOfSquares calculates the sum of squared pixels over a specified region in the image. The value at each position is the sum of all squared pixels in a source image rectangle, sumRect:
- MPSImage
Keypoint Range Info MPSImageKeypoint
andMPSImage
- Specifies information to find the keypoints in an image.
- MPSImage
Lanczos Scale MPSImageResampling
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- Resize an image and / or change its aspect ratio
- MPSImage
Laplacian MPSImageConvolution
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageLaplacian is an optimized variant of the MPSImageConvolution filter provided primarily for ease of use. This filter uses an optimized convolution filter with a 3 x 3 kernel with the following weights: [ 0 1 0 1 -4 1 0 1 0 ]
- MPSImage
Laplacian Pyramid MPSImageConvolution
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- Laplacian pyramid levels are constructed as difference between the current source level and 2x interpolated version of the half-resolution source level immediately above it.
- MPSImage
Laplacian Pyramid Add MPSImageConvolution
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- Apple’s documentation
- MPSImage
Laplacian Pyramid Subtract MPSImageConvolution
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- Apple’s documentation
- MPSImage
Median MPSImageMedian
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageMedian applies a median filter to an image. A median filter finds the median color value for each channel within a kernelDiameter x kernelDiameter window surrounding the pixel of interest. It is a common means of noise reduction and also as a smoothing filter with edge preserving qualities.
- MPSImage
Multiply MPSImageMath
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSImage
Normalized Histogram MPSImageHistogram
andMPSImage
andMPSCore
andMPSKernel
- The MPSImageNormalizedHistogram computes the normalized histogram of an image. The minimum and maximum pixel values for a given region of an image are first computed. The max(computed minimum pixel value, MPSImageHistogramInfo.minPixelValue) and the min(computed maximum pixel value, MPSImageHistogramInfo.maxPixelValue) are used to compute the normalized histogram.
- MPSImage
Pyramid MPSImageConvolution
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImagePyramid is a base class for creating different kinds of pyramid images
- MPSImage
Read Write Params MPSImage
andMPSCore
- these parameters are passed in to allow user to read/write to a particular set of featureChannels in an MPSImage
- MPSImage
Reduce Column Max MPSImageReduce
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageReduceColumnMax performs a reduction operation returning the maximum value for each column of an image
- MPSImage
Reduce Column Mean MPSImageReduce
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageReduceColumnMean performs a reduction operation returning the mean value for each column of an image
- MPSImage
Reduce Column Min MPSImageReduce
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageReduceColumnMin performs a reduction operation returning the mininmum value for each column of an image
- MPSImage
Reduce Column Sum MPSImageReduce
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageReduceColumnSum performs a reduction operation returning the sum for each column of an image
- MPSImage
Reduce RowMax MPSImageReduce
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageReduceRowMax performs a reduction operation returning the maximum value for each row of an image
- MPSImage
Reduce RowMean MPSImageReduce
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageReduceRowMean performs a reduction operation returning the mean value for each row of an image
- MPSImage
Reduce RowMin MPSImageReduce
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageReduceRowMin performs a reduction operation returning the mininmum value for each row of an image
- MPSImage
Reduce RowSum MPSImageReduce
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageReduceRowSum performs a reduction operation returning the sum for each row of an image
- MPSImage
Reduce Unary MPSImageReduce
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageReduce performs a reduction operation The reduction operations supported are:
- MPSImage
Region MPSCoreTypes
andMPSCore
- A rectangular subregion of a MPSImage
- MPSImage
Scale MPSImageResampling
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- Resize an image and / or change its aspect ratio
- MPSImage
Sobel MPSImageConvolution
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageSobel implements the Sobel filter. When the color model (e.g. RGB, two-channel, grayscale, etc.) of source and destination textures match, the filter is applied to each channel separately. If the destination is monochrome (single channel) but source multichannel, the pixel values are converted to grayscale before applying Sobel operator using the linear gray color transform vector (v).
- MPSImage
Statistics Mean MPSImageStatistics
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageStatisticsMean computes the mean for a given region of an image.
- MPSImage
Statistics Mean AndVariance MPSImageStatistics
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageStatisticsMeanAndVariance computes the mean and variance for a given region of an image. The mean and variance values are written to the destination image at the following pixel locations:
- MPSImage
Statistics MinAnd Max MPSImageStatistics
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageStatisticsMinAndMax computes the minimum and maximum pixel values for a given region of an image. The min and max values are written to the destination image at the following pixel locations:
- MPSImage
Subtract MPSImageMath
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSImage
Tent MPSImageConvolution
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The box filter, while fast, may yield square-ish looking blur effects. However, multiple passes of the box filter tend to smooth out with each additional pass. For example, two 3-wide box blurs produces the same effective convolution as a 5-wide tent blur:
- MPSImage
Threshold Binary MPSImageThreshold
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSThreshold filter applies a fixed-level threshold to each pixel in the image. The threshold functions convert a single channel image to a binary image. If the input image is not a single channel image, convert the inputimage to a single channel luminance image using the linearGrayColorTransform and then apply the threshold. The ThresholdBinary function is: destinationPixelValue = sourcePixelValue > thresholdValue ? maximumValue : 0
- MPSImage
Threshold Binary Inverse MPSImageThreshold
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageThresholdBinaryInverse filter applies a fixed-level threshold to each pixel in the image. The threshold functions convert a single channel image to a binary image. If the input image is not a single channel image, convert the inputimage to a single channel luminance image using the linearGrayColorTransform and then apply the threshold. The ThresholdBinaryInverse function is: destinationPixelValue = sourcePixelValue > thresholdValue ? 0 : maximumValue
- MPSImage
Threshold ToZero MPSImageThreshold
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageThresholdToZero filter applies a fixed-level threshold to each pixel in the image. The threshold functions convert a single channel image to a binary image. If the input image is not a single channel image, convert the inputimage to a single channel luminance image using the linearGrayColorTransform and then apply the threshold. The ThresholdToZero function is: destinationPixelValue = sourcePixelValue > thresholdValue ? sourcePixelValue : 0
- MPSImage
Threshold ToZero Inverse MPSImageThreshold
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageThresholdToZeroInverse filter applies a fixed-level threshold to each pixel in the image. The threshold functions convert a single channel image to a binary image. If the input image is not a single channel image, convert the inputimage to a single channel luminance image using the linearGrayColorTransform and then apply the threshold. The ThresholdToZeroINverse function is: destinationPixelValue = sourcePixelValue > thresholdValue ? 0 : sourcePixelValue
- MPSImage
Threshold Truncate MPSImageThreshold
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageThresholdTruncate filter applies a fixed-level threshold to each pixel in the image: The threshold functions convert a single channel image to a binary image. If the input image is not a single channel image, convert the inputimage to a single channel luminance image using the linearGrayColorTransform and then apply the threshold. The ThresholdTruncate function is: destinationPixelValue = sourcePixelValue > thresholdValue ? thresholdValue : sourcePixelValue
- MPSImage
Transpose MPSImageTranspose
andMPSImage
andMPSCore
andMPSImageKernel
andMPSKernel
- The MPSImageTranspose transposes an image
- MPSImage
Type MPSKernelTypes
andMPSCore
- Apple’s documentation
- MPSInstance
Acceleration Structure Deprecated MPSInstanceAccelerationStructure
andMPSRayIntersector
andMPSAccelerationStructure
andMPSCore
andMPSKernel
- An acceleration structure built over instances of other acceleration structures
- MPSInteger
Division Params MPSKernelTypes
andMPSCore
- Apple’s documentation
- MPSIntersection
Data Type MPSRayIntersector
- Intersection data type options
- MPSIntersection
Distance MPSRayIntersectorTypes
andMPSRayIntersector
- Returned intersection result which contains the distance from the ray origin to the intersection point
- MPSIntersection
Distance Primitive Index MPSRayIntersectorTypes
andMPSRayIntersector
- Intersection result which contains the distance from the ray origin to the intersection point and the index of the intersected primitive
- MPSIntersection
Distance Primitive Index Buffer Index MPSRayIntersectorTypes
andMPSRayIntersector
- Intersection result which contains the distance from the ray origin to the intersection point, the index of the intersected primitive, and the polygon buffer index of the intersected primitive.
- MPSIntersection
Distance Primitive Index Buffer Index Instance Index MPSRayIntersectorTypes
andMPSRayIntersector
- Intersection result which contains the distance from the ray origin to the intersection point, the index of the intersected primitive, the polygon buffer index of the intersected primitive, and the index of the intersected instance.
- MPSIntersection
Distance Primitive Index Instance Index MPSRayIntersectorTypes
andMPSRayIntersector
- Intersection result which contains the distance from the ray origin to the intersection point, the index of the intersected primitive, and the index of the intersected instance.
- MPSIntersection
Type MPSRayIntersector
- Options for the MPSRayIntersector intersection type property
- MPSKernel
MPSKernel
andMPSCore
- Dependencies: This depends on Metal.framework
- MPSKernel
Options MPSCoreTypes
andMPSCore
- Apple’s documentation
- MPSKeyed
Unarchiver MPSKeyedUnarchiver
andMPSCore
- A NSKeyedArchiver that supports the MPSDeviceProvider protocol for MPSKernel decoding
- MPSLSTM
Descriptor MPSRNNLayer
andMPSNeuralNetwork
- Dependencies: This depends on Metal.framework
- MPSMatrix
MPSMatrix
andMPSCore
- Dependencies: This depends on Metal.framework
- MPSMatrix
Batch Normalization MPSMatrixBatchNormalization
andMPSNeuralNetwork
andMPSCore
andMPSKernel
andMPSMatrix
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSMatrix
Batch Normalization Gradient MPSMatrixBatchNormalization
andMPSNeuralNetwork
andMPSCore
andMPSKernel
andMPSMatrix
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSMatrix
Binary Kernel MPSMatrixTypes
andMPSMatrix
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSMatrix
Copy MPSMatrixCombination
andMPSMatrix
andMPSCore
andMPSKernel
- Apple’s documentation
- MPSMatrix
Copy Descriptor MPSMatrixCombination
andMPSMatrix
- A list of copy operations
- MPSMatrix
Copy Offsets MPSMatrixCombination
andMPSMatrix
- A description of each copy operation
- MPSMatrix
Copy ToImage MPSImageCopy
andMPSImage
andMPSCore
andMPSKernel
- The MPSMatrixCopyToImage copies matrix data to a MPSImage. The operation is the reverse of MPSImageCopyToMatrix.
- MPSMatrix
Decomposition Cholesky MPSMatrixDecomposition
andMPSMatrix
andMPSCore
andMPSKernel
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSMatrix
DecompositionLU MPSMatrixDecomposition
andMPSMatrix
andMPSCore
andMPSKernel
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSMatrix
Decomposition Status MPSMatrixDecomposition
andMPSMatrix
- Apple’s documentation
- MPSMatrix
Descriptor MPSMatrix
andMPSCore
- Dependencies: This depends on Metal.framework
- MPSMatrix
Find TopK MPSMatrixFindTopK
andMPSMatrix
andMPSCore
andMPSKernel
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSMatrix
Fully Connected MPSMatrixFullyConnected
andMPSNeuralNetwork
andMPSCore
andMPSKernel
andMPSMatrix
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSMatrix
Fully Connected Gradient MPSMatrixFullyConnected
andMPSNeuralNetwork
andMPSCore
andMPSKernel
andMPSMatrix
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSMatrix
LogSoft Max MPSMatrixSoftMax
andMPSMatrix
andMPSCore
andMPSKernel
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSMatrix
LogSoft MaxGradient MPSMatrixSoftMax
andMPSMatrix
andMPSCore
andMPSKernel
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSMatrix
Multiplication MPSMatrixMultiplication
andMPSMatrix
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSMatrix
Neuron MPSMatrixNeuron
andMPSNeuralNetwork
andMPSCore
andMPSKernel
andMPSMatrix
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSMatrix
Neuron Gradient MPSMatrixNeuron
andMPSNeuralNetwork
andMPSCore
andMPSKernel
andMPSMatrix
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSMatrix
Offset MPSKernelTypes
andMPSCore
- Specifies a row and column offset into an MPSMatrix.
- MPSMatrix
Random MPSMatrixRandom
andMPSMatrix
andMPSCore
andMPSKernel
- Kernels that implement random number generation.
- MPSMatrix
Random Distribution MPSMatrixRandom
andMPSMatrix
- Apple’s documentation
- MPSMatrix
Random Distribution Descriptor MPSMatrixRandom
andMPSMatrix
- Dependencies: This depends on Metal.framework
- MPSMatrix
RandomMTG P32 MPSMatrixRandom
andMPSMatrix
andMPSCore
andMPSKernel
- Generates random numbers using a Mersenne Twister algorithm suitable for GPU execution. It uses a period of 2**11214. For further details see: Mutsuo Saito. A Variant of Mersenne Twister Suitable for Graphic Processors. arXiv:1005.4973
- MPSMatrix
Random Philox MPSMatrixRandom
andMPSMatrix
andMPSCore
andMPSKernel
- Generates random numbers using a counter based algorithm. For further details see: John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel Random Numbers: As Easy as 1, 2, 3.
- MPSMatrix
Soft Max MPSMatrixSoftMax
andMPSMatrix
andMPSCore
andMPSKernel
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSMatrix
Soft MaxGradient MPSMatrixSoftMax
andMPSMatrix
andMPSCore
andMPSKernel
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSMatrix
Solve Cholesky MPSMatrixSolve
andMPSMatrix
andMPSCore
andMPSKernel
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSMatrix
SolveLU MPSMatrixSolve
andMPSMatrix
andMPSCore
andMPSKernel
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSMatrix
Solve Triangular MPSMatrixSolve
andMPSMatrix
andMPSCore
andMPSKernel
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSMatrix
Sum MPSMatrixSum
andMPSNeuralNetwork
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSMatrix
Unary Kernel MPSMatrixTypes
andMPSMatrix
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSMatrix
Vector Multiplication MPSMatrixMultiplication
andMPSMatrix
andMPSCore
andMPSKernel
andMPSMatrixTypes
- Dependencies: This depends on Metal.framework.
- MPSND
Array MPSNDArray
andMPSCore
- A MPSNDArray object is a MTLBuffer based storage container for multi-dimensional data.
- MPSND
Array Affine Int4 Dequantize MPSNDArrayQuantizedMatrixMultiplication
andMPSNDArray
andMPSCore
andMPSKernel
andMPSNDArrayKernel
- Dependencies: This depends on Metal.framework.
- MPSND
Array Affine Quantization Descriptor MPSNDArrayQuantization
andMPSNDArray
- Dependencies: This depends on Metal.framework.
- MPSND
Array Binary Kernel MPSNDArrayKernel
andMPSNDArray
andMPSCore
andMPSKernel
- Apple’s documentation
- MPSND
Array Binary Primary Gradient Kernel MPSNDArrayKernel
andMPSNDArray
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSND
Array Binary Secondary Gradient Kernel MPSNDArrayKernel
andMPSNDArray
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSND
Array Descriptor MPSNDArray
andMPSCore
- Dependencies: This depends on Metal.framework
- MPSND
Array Gather MPSNDArrayGather
andMPSNDArray
andMPSCore
andMPSKernel
andMPSNDArrayKernel
- Dependencies: This depends on Metal.framework.
- MPSND
Array Gather Gradient MPSNDArrayGather
andMPSNDArray
andMPSCore
andMPSKernel
andMPSNDArrayKernel
- Dependencies: This depends on Metal.framework.
- MPSND
Array Gather Gradient State MPSNDArrayGather
andMPSNDArray
andMPSCore
andMPSNDArrayGradientState
andMPSState
- at the time an -encode call was made.
- MPSND
Array Gradient State MPSNDArrayGradientState
andMPSNDArray
andMPSCore
andMPSState
- at the time an -encode call was made. The contents are opaque.
- MPSND
Array Identity MPSNDArrayIdentity
andMPSNDArray
andMPSCore
andMPSKernel
andMPSNDArrayKernel
- Dependencies: This depends on Metal.framework.
- MPSND
ArrayLUT Dequantize MPSNDArrayQuantizedMatrixMultiplication
andMPSNDArray
andMPSCore
andMPSKernel
andMPSNDArrayKernel
- Dependencies: This depends on Metal.framework.
- MPSND
ArrayLUT Quantization Descriptor MPSNDArrayQuantization
andMPSNDArray
- Dependencies: This depends on Metal.framework.
- MPSND
Array Matrix Multiplication MPSNDArrayMatrixMultiplication
andMPSNDArray
andMPSCore
andMPSKernel
andMPSNDArrayKernel
- Dependencies: This depends on Metal.framework.
- MPSND
Array Multiary Base MPSNDArrayKernel
andMPSNDArray
andMPSCore
andMPSKernel
- Apple’s documentation
- MPSND
Array Multiary Gradient Kernel MPSNDArrayKernel
andMPSNDArray
andMPSCore
andMPSKernel
- Apple’s documentation
- MPSND
Array Multiary Kernel MPSNDArrayKernel
andMPSNDArray
andMPSCore
andMPSKernel
- Apple’s documentation
- MPSND
Array Offsets MPSNDArrayTypes
andMPSNDArray
- Apple’s documentation
- MPSND
Array Quantization Descriptor MPSNDArrayQuantization
andMPSNDArray
- Dependencies: This depends on Metal.framework.
- MPSND
Array Quantization Scheme MPSNDArrayQuantization
andMPSNDArray
- Apple’s documentation
- MPSND
Array Quantized Matrix Multiplication MPSNDArrayQuantizedMatrixMultiplication
andMPSNDArray
andMPSCore
andMPSKernel
andMPSNDArrayKernel
andMPSNDArrayMatrixMultiplication
- Dependencies: This depends on Metal.framework.
- MPSND
Array Sizes MPSNDArrayTypes
andMPSNDArray
- Apple’s documentation
- MPSND
Array Strided Slice MPSNDArrayStridedSlice
andMPSNDArray
andMPSCore
andMPSKernel
andMPSNDArrayKernel
- Dependencies: This depends on Metal.framework.
- MPSND
Array Strided Slice Gradient MPSNDArrayStridedSlice
andMPSNDArray
andMPSCore
andMPSKernel
andMPSNDArrayKernel
- Dependencies: This depends on Metal.framework.
- MPSND
Array Unary Gradient Kernel MPSNDArrayKernel
andMPSNDArray
andMPSCore
andMPSKernel
- Apple’s documentation
- MPSND
Array Unary Kernel MPSNDArrayKernel
andMPSNDArray
andMPSCore
andMPSKernel
- Apple’s documentation
- MPSND
Array VectorLUT Dequantize MPSNDArrayQuantizedMatrixMultiplication
andMPSNDArray
andMPSCore
andMPSKernel
andMPSNDArrayKernel
- Dependencies: This depends on Metal.framework.
- MPSNN
Addition Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- returns gradient for either primary or secondary source image from the inference pass. Use the isSecondarySourceFilter property to indicate whether this filter is computing the gradient for the primary or secondary source image from the inference pass.
- MPSNN
Addition Node MPSNNGraphNodes
andMPSNeuralNetwork
- returns elementwise sum of left + right
- MPSNN
Arithmetic Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Arithmetic Gradient State Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Bilinear Scale Node MPSNNGraphNodes
andMPSNeuralNetwork
- A MPSNNScale object that uses bilinear interpolation for resampling
- MPSNN
Binary Arithmetic Node MPSNNGraphNodes
andMPSNeuralNetwork
- virtual base class for basic arithmetic nodes
- MPSNN
Binary Gradient State MPSNNGradientState
andMPSNeuralNetwork
andMPSCore
andMPSState
- at the time an -encode call was made. The contents are opaque.
- MPSNN
Binary Gradient State Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Compare MPSCNNMath
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSNN
Comparison Node MPSNNGraphNodes
andMPSNeuralNetwork
- returns elementwise comparison of left and right
- MPSNN
Comparison Type MPSCNNMath
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Concatenation Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- A MPSNNSlice filter that operates as the conjugate computation for concatentation operators during training
- MPSNN
Concatenation Node MPSNNGraphNodes
andMPSNeuralNetwork
- Node representing a the concatenation (in the feature channel dimension) of the results from one or more kernels
- MPSNN
Convolution Accumulator Precision Option MPSNeuralNetworkTypes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Crop AndResize Bilinear MPSNNResize
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSNN
Default Padding MPSNeuralNetworkTypes
andMPSNeuralNetwork
- This class provides some pre-rolled padding policies for common tasks
- MPSNN
Division Node MPSNNGraphNodes
andMPSNeuralNetwork
- returns elementwise quotient of left / right
- MPSNN
Filter Node MPSNNGraphNodes
andMPSNeuralNetwork
- A placeholder node denoting a neural network filter stage
- MPSNN
Forward Loss MPSCNNLoss
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSNN
Forward Loss Node MPSNNGraphNodes
andMPSNeuralNetwork
- Node representing a MPSNNForwardLosskernel
- MPSNN
Gradient Filter Node MPSNNGraphNodes
andMPSNeuralNetwork
- For each MPSNNFilterNode, there is a corresponding MPSNNGradientFilterNode used for training that back propagates image gradients to refine the various parameters in each node. Generally, it takes as input a gradient corresponding to the result image from the MPSNNFilterNode and returns a gradient image corresponding to the source image of the MPSNNFilterNode. In addition, there is generally a MPSNNState produced by the MPSNNFilterNode that is consumed by the MPSNNGradientNode and the MPSNNGradientNode generally needs to look at the MPSNNFilterNode source image.
- MPSNN
Gradient State MPSNNGradientState
andMPSNeuralNetwork
andMPSCore
andMPSState
- at the time an -encode call was made. The contents are opaque.
- MPSNN
Gradient State Node MPSNNGraphNodes
andMPSNeuralNetwork
- During training, each MPSNNFilterNode has a corresponding MPSNNGradientFilterNode for the gradient computation for trainable parameter update. The two communicate through a MPSNNGradientStateNode or subclass which carries information about the inference pass settings to the gradient pass. You can avoid managing these – there will be many! – by using -[MPSNNFilterNode gradientFilterWithSources:] to make the MPSNNGradientFilterNodes. That method will append the necessary extra information like MPSNNGradientState nodes and inference filter source image nodes to the object as needed.
- MPSNN
Gram Matrix Calculation MPSCNNConvolution
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSNN
Gram Matrix Calculation Gradient MPSCNNConvolution
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSNN
Gram Matrix Calculation Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Node representing a MPSNNGramMatrixCalculationGradientkernel
- MPSNN
Gram Matrix Calculation Node MPSNNGraphNodes
andMPSNeuralNetwork
- Node representing a MPSNNGramMatrixCalculationkernel
- MPSNN
Graph MPSNNGraph
andMPSNeuralNetwork
andMPSCore
andMPSKernel
- Optimized representation of a graph of MPSNNImageNodes and MPSNNFilterNodes
- MPSNN
Grid Sample MPSNNGridSample
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Apple’s documentation
- MPSNN
Image Node MPSNNGraphNodes
andMPSNeuralNetwork
- A placeholder node denoting the position of a MPSImage in a graph
- MPSNN
Initial Gradient MPSCNNLoss
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSNN
Initial Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node for a MPSNNInitialGradient kernel
- MPSNN
Labels Node MPSNNGraphNodes
andMPSNeuralNetwork
- The labels and weights for each MPSImage are passed in separately to the graph in a MPSNNLabels object. If the batch interface is used then there will be a MPSStateBatch of these of the same size as the MPSImageBatch that holds the images. The MPSNNLabelsNode is a place holder in the graph for these nodes. The MPSNNLabels node is taken as an input to the Loss node
- MPSNN
Lanczos Scale Node MPSNNGraphNodes
andMPSNeuralNetwork
- A MPSNNScale object that uses the Lanczos resampling filter
- MPSNN
Local Correlation MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNLocalCorrelation filter computes the correlation between two images locally with a varying offset on x-y plane between the two source images (controlled by the window and stride properties) and the end result is summed over the feature channels. The results are stored in the different feature channels of the destination image, ordered such that the offset in the x direction is the faster running index.
- MPSNN
Loss Gradient MPSCNNLoss
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework.
- MPSNN
Loss Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Node representing a MPSNNLossGradientkernel
- MPSNN
Multiary Gradient State MPSNNGradientState
andMPSNeuralNetwork
andMPSCore
andMPSState
- Apple’s documentation
- MPSNN
Multiary Gradient State Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Multiplication Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- returns gradient for either primary or secondary source image from the inference pass. Use the isSecondarySourceFilter property to indicate whether this filter is computing the gradient for the primary or secondary source image from the inference pass.
- MPSNN
Multiplication Node MPSNNGraphNodes
andMPSNeuralNetwork
- returns elementwise product of left * right
- MPSNN
Neuron Descriptor MPSCNNNeuron
andMPSNeuralNetwork
- Dependencies: This depends on Metal.framework
- MPSNN
Optimizer MPSNNOptimizers
andMPSNeuralNetwork
andMPSCore
andMPSKernel
- The MPSNNOptimizer base class, use one of the child classes, not to be directly used. Optimizers are generally used to update trainable neural network parameters. Users are usually expected to call these MPSKernels from the update methods on their Convolution or BatchNormalization data sources.
- MPSNN
Optimizer Adam MPSNNOptimizers
andMPSNeuralNetwork
andMPSCore
andMPSKernel
- The MPSNNOptimizerAdam performs an Adam Update
- MPSNN
Optimizer Descriptor MPSNNOptimizers
andMPSNeuralNetwork
- The MPSNNOptimizerDescriptor base class. Optimizers are generally used to update trainable neural network parameters. Users are usually expected to call these MPSKernels from the update methods on their Convolution or BatchNormalization data sources.
- MPSNN
OptimizerRMS Prop MPSNNOptimizers
andMPSNeuralNetwork
andMPSCore
andMPSKernel
- The MPSNNOptimizerRMSProp performs an RMSProp Update RMSProp is also known as root mean square propagation.
- MPSNN
Optimizer Stochastic Gradient Descent MPSNNOptimizers
andMPSNeuralNetwork
andMPSCore
andMPSKernel
- The MPSNNOptimizerStochasticGradientDescent performs a gradient descent with an optional momentum Update RMSProp is also known as root mean square propagation.
- MPSNN
Pad MPSNNReshape
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Apple’s documentation
- MPSNN
PadGradient MPSNNReshape
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSNN
PadGradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
PadNode MPSNNGraphNodes
andMPSNeuralNetwork
- A node for a MPSNNPad kernel
- MPSNN
Padding Method MPSNeuralNetworkTypes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reduce Binary MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNReduce performs a reduction operation The reduction operations supported are:
- MPSNN
Reduce Column Max MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNReduceColumnMax performs a reduction operation returning the maximum value for each column of an image
- MPSNN
Reduce Column Mean MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNReduceColumnMean performs a reduction operation returning the mean value for each column of an image
- MPSNN
Reduce Column Min MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNReduceColumnMin performs a reduction operation returning the mininmum value for each column of an image
- MPSNN
Reduce Column Sum MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNReduceColumnSum performs a reduction operation returning the sum for each column of an image
- MPSNN
Reduce Feature Channels AndWeights Mean MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Apple’s documentation
- MPSNN
Reduce Feature Channels AndWeights Sum MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Apple’s documentation
- MPSNN
Reduce Feature Channels Argument Max MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNReduceFeatureChannelsArgumentMax performs returns the argument index that is the location of the maximum value for feature channels of an image
- MPSNN
Reduce Feature Channels Argument Min MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNReduceFeatureChannelsArgumentMin returns the argument index that is the location of the minimum value for feature channels of an image
- MPSNN
Reduce Feature Channels Max MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNReduceFeatureChannelsMax performs a reduction operation returning the maximum value for feature channels of an image
- MPSNN
Reduce Feature Channels Mean MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNReduceFeatureChannelsMean performs a reduction operation returning the mean value for each column of an image
- MPSNN
Reduce Feature Channels Min MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNReduceFeatureChannelsMin performs a reduction operation returning the mininmum value for feature channels of an image
- MPSNN
Reduce Feature Channels Sum MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNReduceFeatureChannelsSum performs a reduction operation returning the sum for each column of an image
- MPSNN
Reduce RowMax MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNReduceRowMax performs a reduction operation returning the maximum value for each row of an image
- MPSNN
Reduce RowMean MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNReduceRowMean performs a reduction operation returning the mean value for each row of an image
- MPSNN
Reduce RowMin MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNReduceRowMin performs a reduction operation returning the mininmum value for each row of an image
- MPSNN
Reduce RowSum MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNReduceRowSum performs a reduction operation returning the sum for each row of an image
- MPSNN
Reduce Unary MPSNNReduce
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- The MPSNNReduce performs a reduction operation The reduction operations supported are:
- MPSNN
Reduction Column MaxNode MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reduction Column Mean Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reduction Column MinNode MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reduction Column SumNode MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reduction Feature Channels Argument MaxNode MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reduction Feature Channels Argument MinNode MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reduction Feature Channels MaxNode MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reduction Feature Channels Mean Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reduction Feature Channels MinNode MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reduction Feature Channels SumNode MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reduction RowMax Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reduction RowMean Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reduction RowMin Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reduction RowSum Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reduction Spatial Mean Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reduction Spatial Mean Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Regularization Type MPSNNOptimizers
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reshape MPSNNReshape
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Apple’s documentation
- MPSNN
Reshape Gradient MPSNNReshape
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSNN
Reshape Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Reshape Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node for a MPSNNReshape kernel
- MPSNN
Resize Bilinear MPSNNResize
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSNN
Scale Node MPSNNGraphNodes
andMPSNeuralNetwork
- Abstract Node representing a image resampling operation
- MPSNN
Slice MPSNNSlice
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Apple’s documentation
- MPSNN
State Node MPSNNGraphNodes
andMPSNeuralNetwork
- A placeholder node denoting the position in the graph of a MPSState object
- MPSNN
Subtraction Gradient Node MPSNNGraphNodes
andMPSNeuralNetwork
- returns gradient for either primary or secondary source image from the inference pass. Use the isSecondarySourceFilter property to indicate whether this filter is computing the gradient for the primary or secondary source image from the inference pass.
- MPSNN
Subtraction Node MPSNNGraphNodes
andMPSNeuralNetwork
- returns elementwise difference of left - right
- MPSNN
Training Style MPSNeuralNetworkTypes
andMPSNeuralNetwork
- Apple’s documentation
- MPSNN
Unary Reduction Node MPSNNGraphNodes
andMPSNeuralNetwork
- A node for a unary MPSNNReduce node.
- MPSOffset
MPSCoreTypes
andMPSCore
- A signed coordinate with x, y and z components
- MPSOrigin
MPSCoreTypes
andMPSCore
- A position in an image
- MPSPacked
Float3 MPSRayIntersectorTypes
- Apple’s documentation
- MPSPolygon
Acceleration Structure Deprecated MPSPolygonAccelerationStructure
andMPSRayIntersector
andMPSAccelerationStructure
andMPSCore
andMPSKernel
- An acceleration structure built over polygonal shapes
- MPSPolygon
Buffer Deprecated MPSPolygonBuffer
andMPSRayIntersector
- A vertex buffer and optional index and mask buffer for a set of polygons
- MPSPolygon
Type Deprecated MPSPolygonAccelerationStructure
andMPSRayIntersector
- Apple’s documentation
- MPSPredicate
MPSCommandBuffer
andMPSCore
- Dependencies: This depends on Metal.framework
- MPSPurgeable
State MPSImage
andMPSCore
- Apple’s documentation
- MPSQuadrilateral
Acceleration Structure Deprecated MPSQuadrilateralAccelerationStructure
andMPSRayIntersector
andMPSAccelerationStructure
andMPSCore
andMPSKernel
andMPSPolygonAccelerationStructure
- An acceleration structure built over quadrilaterals
- MPSRNN
Bidirectional Combine Mode MPSRNNLayer
andMPSNeuralNetwork
- Apple’s documentation
- MPSRNN
Descriptor MPSRNNLayer
andMPSNeuralNetwork
- Dependencies: This depends on Metal.framework
- MPSRNN
Image Inference Layer MPSRNNLayer
andMPSNeuralNetwork
andMPSCNNKernel
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSRNN
Matrix Id MPSRNNLayer
andMPSNeuralNetwork
- Apple’s documentation
- MPSRNN
Matrix Inference Layer MPSRNNLayer
andMPSNeuralNetwork
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSRNN
Matrix Training Layer MPSRNNLayer
andMPSNeuralNetwork
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSRNN
Matrix Training State MPSRNNLayer
andMPSNeuralNetwork
andMPSCore
andMPSState
- Dependencies: This depends on Metal.framework
- MPSRNN
Recurrent Image State MPSRNNLayer
andMPSNeuralNetwork
andMPSCore
andMPSState
- Dependencies: This depends on Metal.framework
- MPSRNN
Recurrent Matrix State MPSRNNLayer
andMPSNeuralNetwork
andMPSCore
andMPSState
- Dependencies: This depends on Metal.framework
- MPSRNN
Sequence Direction MPSRNNLayer
andMPSNeuralNetwork
- Apple’s documentation
- MPSRNN
Single Gate Descriptor MPSRNNLayer
andMPSNeuralNetwork
- Dependencies: This depends on Metal.framework
- MPSRay
Data Type MPSRayIntersector
- Options for the MPSRayIntersector ray data type property
- MPSRay
Intersector Deprecated MPSCore
andMPSKernel
andMPSRayIntersector
- Performs intersection tests between rays and the geometry in an MPSAccelerationStructure
- MPSRay
Mask Operator Deprecated MPSRayIntersector
- Options for the MPSRayIntersector ray mask operator property
- MPSRay
Mask Options Deprecated MPSRayIntersector
- Options for the MPSRayIntersector ray mask options property
- MPSRay
Origin Mask Direction MaxDistance MPSRayIntersectorTypes
andMPSRayIntersector
- Represents a 3D ray with an origin, a direction, and a mask to filter out intersections
- MPSRay
Origin MinDistance Direction MaxDistance MPSRayIntersectorTypes
andMPSRayIntersector
- Represents a 3D ray with an origin, a direction, and an intersection distance range from the origin
- MPSRay
Packed Origin Direction MPSRayIntersectorTypes
andMPSRayIntersector
- Represents a 3D ray with an origin and a direction
- MPSRegion
MPSCoreTypes
andMPSCore
- A region of an image
- MPSSVGF
MPSSVGF
andMPSRayIntersector
andMPSCore
andMPSKernel
- Reduces noise in images rendered with Monte Carlo ray tracing methods
- MPSSVGF
Default Texture Allocator MPSSVGF
andMPSRayIntersector
- A default implementation of the MPSSVGFTextureAllocator protocol. Maintains a cache of textures which is checked first when a texture is requested. If there is no suitable texture in the cache, allocates a texture directly from the Metal device.
- MPSSVGF
Denoiser MPSSVGF
andMPSRayIntersector
- A convenience object which uses an MPSSVGF object to manage the denoising process
- MPSScale
Transform MPSCoreTypes
andMPSCore
- Transform matrix for explict control over resampling in MPSImageScale.
- MPSSize
MPSCoreTypes
andMPSCore
- A size of a region in an image
- MPSState
MPSState
andMPSCore
- Dependencies: This depends on Metal Framework
- MPSState
Resource List MPSState
andMPSCore
- Apple’s documentation
- MPSState
Resource Type MPSState
andMPSCore
- Apple’s documentation
- MPSState
Texture Info MPSState
andMPSCore
- Apple’s documentation
- MPSTemporalAA
MPSTemporalAA
andMPSRayIntersector
andMPSCore
andMPSKernel
- Reduces aliasing in an image by accumulating samples over multiple frames
- MPSTemporal
Weighting MPSSVGF
andMPSRayIntersector
- Controls how samples are weighted over time
- MPSTemporary
Image MPSImage
andMPSCore
- Dependencies: MPSImage
- MPSTemporary
Matrix MPSMatrix
andMPSCore
- A MPSMatrix allocated on GPU private memory.
- MPSTemporaryND
Array MPSNDArray
andMPSCore
- A MPSNDArray that uses command buffer specific memory to store the array data
- MPSTemporary
Vector MPSMatrix
andMPSCore
- A MPSVector allocated on GPU private memory.
- MPSTransform
Type MPSInstanceAccelerationStructure
andMPSRayIntersector
- Instance transformation type options
- MPSTriangle
Acceleration Structure Deprecated MPSTriangleAccelerationStructure
andMPSRayIntersector
andMPSAccelerationStructure
andMPSCore
andMPSKernel
andMPSPolygonAccelerationStructure
- An acceleration structure built over triangles
- MPSTriangle
Intersection Test Type Deprecated MPSRayIntersector
- Options for the MPSRayIntersector triangle intersection test type property
- MPSUnary
Image Kernel MPSImageKernel
andMPSImage
andMPSCore
andMPSKernel
- Dependencies: This depends on Metal.framework
- MPSVector
MPSMatrix
andMPSCore
- Dependencies: This depends on Metal.framework
- MPSVector
Descriptor MPSMatrix
andMPSCore
- Dependencies: This depends on Metal.framework
Constants§
- MPSBatch
Size Index MPSFunctionConstantIndices
andMPSCore
- Apple’s documentation
- MPSDevice
Caps Index MPSFunctionConstantIndices
andMPSCore
- Apple’s documentation
- MPSFunction
Constant Index MPSFunctionConstantIndices
andMPSCore
- Apple’s documentation
- MPSFunction
Constant Index Reserved MPSFunctionConstantIndices
andMPSCore
- Apple’s documentation
- MPSND
Array Constant Index MPSFunctionConstantIndices
andMPSCore
- Apple’s documentation
- MPSND
Array Constant Multi Dest DstAddressing Index MPSFunctionConstantIndices
andMPSCore
- Apple’s documentation
- MPSND
Array Constant Multi Dest Index MPSFunctionConstantIndices
andMPSCore
- Apple’s documentation
- MPSND
Array Constant Multi Dest Index0 MPSFunctionConstantIndices
andMPSCore
- Apple’s documentation
- MPSND
Array Constant Multi Dest Index1 MPSFunctionConstantIndices
andMPSCore
- Apple’s documentation
- MPSND
Array Constant Multi Dest SrcAddressing Index MPSFunctionConstantIndices
andMPSCore
- Apple’s documentation
- MPSTexture
Linking Constant Index MPSFunctionConstantIndices
andMPSCore
- Apple’s documentation
- MPSUser
Available Function Constant Start Index MPSFunctionConstantIndices
andMPSCore
- Apple’s documentation
- MPSUser
Constant Index MPSFunctionConstantIndices
andMPSCore
- Apple’s documentation
Statics§
- MPSFunction
Constant None MPSKernelTypes
andMPSCore
- Apple’s documentation
- MPSRect
NoClip ⚠MPSCoreTypes
andMPSCore
- This is a special constant to indicate no clipping is to be done. The entire image will be used. This is the default clipping rectangle or the input extent for MPSKernels.
Traits§
- MPSCNN
Batch Normalization Data Source MPSCNNBatchNormalization
andMPSNeuralNetwork
- The MPSCNNBatchNormalizationDataSource protocol declares the methods that an instance of MPSCNNBatchNormalizationState uses to initialize the scale factors, bias terms, and batch statistics.
- MPSCNN
Convolution Data Source MPSCNNConvolution
andMPSNeuralNetwork
- Provides convolution filter weights and bias terms
- MPSCNN
Group Normalization Data Source MPSCNNGroupNormalization
andMPSNeuralNetwork
- The MPSCNNGroupNormalizationDataSource protocol declares the methods that an group of MPSCNNGroupNormalization uses to initialize the scale factors (gamma) and bias terms (beta).
- MPSCNN
Instance Normalization Data Source MPSCNNInstanceNormalization
andMPSNeuralNetwork
- The MPSCNNInstanceNormalizationDataSource protocol declares the methods that an instance of MPSCNNInstanceNormalization uses to initialize the scale factors (gamma) and bias terms (beta).
- MPSDevice
Provider MPSCoreTypes
andMPSCore
- A way of extending a NSCoder to enable the setting of MTLDevice for unarchived objects
- MPSHandle
MPSNNGraphNodes
andMPSNeuralNetwork
- MPS resource identification
- MPSHeap
Provider MPSCommandBuffer
andMPSCore
- Apple’s documentation
- MPSImage
Allocator MPSImage
andMPSCore
- A class that allocates new MPSImage or MPSTemporaryImage
- MPSImage
Size Encoding State MPSNeuralNetworkTypes
andMPSNeuralNetwork
- MPSStates conforming to this protocol contain information about a image size elsewhere in the graph
- MPSImage
Transform Provider MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSND
Array Allocator MPSNDArray
andMPSCore
- Apple’s documentation
- MPSNN
Gram Matrix Callback MPSNNGraphNodes
andMPSNeuralNetwork
- MPSNNGramMatrixCallback Defines a callback protocol for MPSNNGramMatrixCalculationNodeto set the ‘alpha’ scaling value dynamically just before encoding the underlying MPSNNGramMatrixCalculation kernel.
- MPSNN
Loss Callback MPSNNGraphNodes
andMPSNeuralNetwork
- MPSNNLossCallback Defines a callback protocol for MPSNNForwardLossNodeand MPSNNLossGradientNodeto set the scalar weight value just before encoding the underlying kernels.
- MPSNN
Padding MPSNeuralNetworkTypes
andMPSNeuralNetwork
- A method to describe how MPSCNNKernels should pad images when data outside the image is needed
- MPSNN
Trainable Node MPSNNGraphNodes
andMPSNeuralNetwork
- Apple’s documentation
- MPSSVGF
Texture Allocator MPSSVGF
andMPSRayIntersector
- Protocol dictating how texture allocator objects should operate so that they can be used by an MPSSVGFDenoiser object to allocate and reuse intermediate and output textures during the denoising process.
Functions§
- MPSGet
Image ⚠Type MPSKernelTypes
andMPSCore
andMPSImage
- MPSGet
Preferred ⚠Device - Identify the preferred device for MPS computation
- MPSHint
Temporary ⚠Memory High Water Mark - Hint to MPS how much memory your application expects to need for the command buffer
- MPSImage
Batch ⚠Increment Read Count Deprecated MPSImage
andMPSCore
- MPSImage
Batch ⚠Iterate Deprecated MPSImage
andMPSCore
andblock2
- MPSImage
Batch ⚠Resource Size Deprecated MPSImage
andMPSCore
- MPSImage
Batch ⚠Synchronize Deprecated MPSImage
andMPSCore
- MPSSet
Heap ⚠Cache Duration - Set the timeout after which unused cached MTLHeaps are released
- MPSState
Batch ⚠Increment Read Count Deprecated MPSState
andMPSCore
- MPSState
Batch ⚠Resource Size Deprecated MPSState
andMPSCore
- MPSState
Batch ⚠Synchronize Deprecated MPSState
andMPSCore
- MPSSupportsMTL
Device ⚠ - MPSSupportsMTLDevice
Type Aliases§
- MPSAcceleration
Structure Completion Handler MPSAccelerationStructure
andMPSRayIntersector
andMPSCore
andMPSKernel
andblock2
- A block of code invoked when an operation on an MPSAccelerationStructure is completed
- MPSCNN
Arithmetic Gradient State Batch MPSCNNMath
andMPSNeuralNetwork
andMPSCore
andMPSNNGradientState
andMPSState
- Apple’s documentation
- MPSCNN
Convolution Gradient State Batch MPSCNNConvolution
andMPSNeuralNetwork
andMPSCore
andMPSNNGradientState
andMPSState
- Apple’s documentation
- MPSCNN
Convolution Transpose Gradient State Batch MPSCNNConvolution
andMPSNeuralNetwork
andMPSCore
andMPSNNGradientState
andMPSState
- Apple’s documentation
- MPSCNN
Dropout Gradient State Batch MPSCNNDropout
andMPSNeuralNetwork
andMPSCore
andMPSNNGradientState
andMPSState
- Apple’s documentation
- MPSCNN
Group Normalization Gradient State Batch MPSCNNGroupNormalization
andMPSNeuralNetwork
andMPSCore
andMPSNNGradientState
andMPSState
- Apple’s documentation
- MPSCNN
Instance Normalization Gradient State Batch MPSCNNInstanceNormalization
andMPSNeuralNetwork
andMPSCore
andMPSNNGradientState
andMPSState
- Apple’s documentation
- MPSCNN
Loss Labels Batch MPSCNNLoss
andMPSNeuralNetwork
andMPSCore
andMPSState
- Apple’s documentation
- MPSCopy
Allocator MPSImageKernel
andMPSImage
andMPSCore
andMPSKernel
andblock2
- Apple’s documentation
- MPSDevice
Caps MPSKernelTypes
andMPSCore
- Apple’s documentation
- MPSFunction
Constant MPSKernelTypes
andMPSCore
- Apple’s documentation
- MPSFunction
Constant InMetal MPSKernelTypes
andMPSCore
- Apple’s documentation
- MPSGradient
Node Block MPSNNGraphNodes
andMPSNeuralNetwork
andblock2
- Block callback for customizing gradient nodes as they are constructed
- MPSImage
Batch MPSImage
andMPSCore
- Apple’s documentation
- MPSNN
Binary Gradient State Batch MPSNNGradientState
andMPSNeuralNetwork
andMPSCore
andMPSState
- Apple’s documentation
- MPSNN
Gradient State Batch MPSNNGradientState
andMPSNeuralNetwork
andMPSCore
andMPSState
- Apple’s documentation
- MPSNN
Graph Completion Handler MPSNNGraph
andMPSNeuralNetwork
andMPSCore
andMPSImage
andblock2
- A notification when computeAsyncWithSourceImages:completionHandler: has finished
- MPSNN
Multiary Gradient State Batch MPSNNGradientState
andMPSNeuralNetwork
andMPSCore
andMPSState
- Apple’s documentation
- MPSShape
MPSCoreTypes
andMPSCore
- An array of NSNumbers where dimension lengths provided by the user goes from slowest moving to fastest moving dimension. This is same order as MLMultiArray in coreML and most frameworks in Python.
- MPSState
Batch MPSState
andMPSCore
- Apple’s documentation