pub struct HMMutableCharacteristicThresholdRangeEvent { /* private fields */ }HMCharacteristicThresholdRangeEvent and HMEvent only.Expand description
This class represents an event when a characteristic’s value falls within the specified number range.
See also Apple’s documentation
Implementations§
Source§impl HMMutableCharacteristicThresholdRangeEvent
impl HMMutableCharacteristicThresholdRangeEvent
pub unsafe fn init(this: Allocated<Self>) -> Retained<Self>
Sourcepub unsafe fn characteristic(&self) -> Retained<HMCharacteristic>
Available on crate feature HMCharacteristic only.
pub unsafe fn characteristic(&self) -> Retained<HMCharacteristic>
HMCharacteristic only.The characteristic associated with the event.
This property is not atomic.
§Safety
This might not be thread-safe.
Sourcepub unsafe fn setCharacteristic(&self, characteristic: &HMCharacteristic)
Available on crate feature HMCharacteristic only.
pub unsafe fn setCharacteristic(&self, characteristic: &HMCharacteristic)
HMCharacteristic only.Sourcepub unsafe fn thresholdRange(&self) -> Retained<HMNumberRange>
Available on crate feature HMNumberRange only.
pub unsafe fn thresholdRange(&self) -> Retained<HMNumberRange>
HMNumberRange only.The range of the characteristic value that triggers the event.
This property is not atomic.
§Safety
This might not be thread-safe.
Sourcepub unsafe fn setThresholdRange(&self, threshold_range: &HMNumberRange)
Available on crate feature HMNumberRange only.
pub unsafe fn setThresholdRange(&self, threshold_range: &HMNumberRange)
HMNumberRange only.Source§impl HMMutableCharacteristicThresholdRangeEvent
Methods declared on superclass HMCharacteristicThresholdRangeEvent.
impl HMMutableCharacteristicThresholdRangeEvent
Methods declared on superclass HMCharacteristicThresholdRangeEvent.
Sourcepub unsafe fn initWithCharacteristic_thresholdRange(
this: Allocated<Self>,
characteristic: &HMCharacteristic,
threshold_range: &HMNumberRange,
) -> Retained<Self>
Available on crate features HMCharacteristic and HMNumberRange only.
pub unsafe fn initWithCharacteristic_thresholdRange( this: Allocated<Self>, characteristic: &HMCharacteristic, threshold_range: &HMNumberRange, ) -> Retained<Self>
HMCharacteristic and HMNumberRange only.Initializes a new characteristic number range event object
Parameter characteristic: The characteristic bound to the event. The characteristic must
support notification. An exception will be thrown otherwise.
Parameter thresholdRange: The range for the characteristic value to trigger the event.
Returns: Instance object representing the characteristic event.
Methods from Deref<Target = HMCharacteristicThresholdRangeEvent>§
Sourcepub unsafe fn characteristic(&self) -> Retained<HMCharacteristic>
Available on crate feature HMCharacteristic only.
pub unsafe fn characteristic(&self) -> Retained<HMCharacteristic>
HMCharacteristic only.The characteristic associated with the event.
This property is not atomic.
§Safety
This might not be thread-safe.
Sourcepub unsafe fn thresholdRange(&self) -> Retained<HMNumberRange>
Available on crate feature HMNumberRange only.
pub unsafe fn thresholdRange(&self) -> Retained<HMNumberRange>
HMNumberRange only.The range of the characteristic value that triggers the event.
This property is not atomic.
§Safety
This might not be thread-safe.
Methods from Deref<Target = HMEvent>§
Sourcepub unsafe fn uniqueIdentifier(&self) -> Retained<NSUUID>
pub unsafe fn uniqueIdentifier(&self) -> Retained<NSUUID>
A unique identifier for the event.
This property is not atomic.
§Safety
This might not be thread-safe.
Methods from Deref<Target = NSObject>§
Sourcepub fn doesNotRecognizeSelector(&self, sel: Sel) -> !
pub fn doesNotRecognizeSelector(&self, sel: Sel) -> !
Handle messages the object doesn’t recognize.
See Apple’s documentation for details.
Methods from Deref<Target = AnyObject>§
Sourcepub fn class(&self) -> &'static AnyClass
pub fn class(&self) -> &'static AnyClass
Dynamically find the class of this object.
§Panics
May panic if the object is invalid (which may be the case for objects
returned from unavailable init/new methods).
§Example
Check that an instance of NSObject has the precise class NSObject.
use objc2::ClassType;
use objc2::runtime::NSObject;
let obj = NSObject::new();
assert_eq!(obj.class(), NSObject::class());Sourcepub unsafe fn get_ivar<T>(&self, name: &str) -> &Twhere
T: Encode,
👎Deprecated: this is difficult to use correctly, use Ivar::load instead.
pub unsafe fn get_ivar<T>(&self, name: &str) -> &Twhere
T: Encode,
Ivar::load instead.Use Ivar::load instead.
§Safety
The object must have an instance variable with the given name, and it
must be of type T.
See Ivar::load_ptr for details surrounding this.
Sourcepub fn downcast_ref<T>(&self) -> Option<&T>where
T: DowncastTarget,
pub fn downcast_ref<T>(&self) -> Option<&T>where
T: DowncastTarget,
Attempt to downcast the object to a class of type T.
This is the reference-variant. Use Retained::downcast if you want
to convert a retained object to another type.
§Mutable classes
Some classes have immutable and mutable variants, such as NSString
and NSMutableString.
When some Objective-C API signature says it gives you an immutable class, it generally expects you to not mutate that, even though it may technically be mutable “under the hood”.
So using this method to convert a NSString to a NSMutableString,
while not unsound, is generally frowned upon unless you created the
string yourself, or the API explicitly documents the string to be
mutable.
See Apple’s documentation on mutability and on
isKindOfClass: for more details.
§Generic classes
Objective-C generics are called “lightweight generics”, and that’s because they aren’t exposed in the runtime. This makes it impossible to safely downcast to generic collections, so this is disallowed by this method.
You can, however, safely downcast to generic collections where all the
type-parameters are AnyObject.
§Panics
This works internally by calling isKindOfClass:. That means that the
object must have the instance method of that name, and an exception
will be thrown (if CoreFoundation is linked) or the process will abort
if that is not the case. In the vast majority of cases, you don’t need
to worry about this, since both root objects NSObject and
NSProxy implement this method.
§Examples
Cast an NSString back and forth from NSObject.
use objc2::rc::Retained;
use objc2_foundation::{NSObject, NSString};
let obj: Retained<NSObject> = NSString::new().into_super();
let string = obj.downcast_ref::<NSString>().unwrap();
// Or with `downcast`, if we do not need the object afterwards
let string = obj.downcast::<NSString>().unwrap();Try (and fail) to cast an NSObject to an NSString.
use objc2_foundation::{NSObject, NSString};
let obj = NSObject::new();
assert!(obj.downcast_ref::<NSString>().is_none());Try to cast to an array of strings.
use objc2_foundation::{NSArray, NSObject, NSString};
let arr = NSArray::from_retained_slice(&[NSObject::new()]);
// This is invalid and doesn't type check.
let arr = arr.downcast_ref::<NSArray<NSString>>();This fails to compile, since it would require enumerating over the array to ensure that each element is of the desired type, which is a performance pitfall.
Downcast when processing each element instead.
use objc2_foundation::{NSArray, NSObject, NSString};
let arr = NSArray::from_retained_slice(&[NSObject::new()]);
for elem in arr {
if let Some(data) = elem.downcast_ref::<NSString>() {
// handle `data`
}
}Trait Implementations§
Source§impl AsRef<HMCharacteristicThresholdRangeEvent> for HMMutableCharacteristicThresholdRangeEvent
impl AsRef<HMCharacteristicThresholdRangeEvent> for HMMutableCharacteristicThresholdRangeEvent
Source§fn as_ref(&self) -> &HMCharacteristicThresholdRangeEvent
fn as_ref(&self) -> &HMCharacteristicThresholdRangeEvent
Source§impl AsRef<HMMutableCharacteristicThresholdRangeEvent> for HMMutableCharacteristicThresholdRangeEvent
impl AsRef<HMMutableCharacteristicThresholdRangeEvent> for HMMutableCharacteristicThresholdRangeEvent
Source§impl Borrow<HMCharacteristicThresholdRangeEvent> for HMMutableCharacteristicThresholdRangeEvent
impl Borrow<HMCharacteristicThresholdRangeEvent> for HMMutableCharacteristicThresholdRangeEvent
Source§fn borrow(&self) -> &HMCharacteristicThresholdRangeEvent
fn borrow(&self) -> &HMCharacteristicThresholdRangeEvent
Source§impl ClassType for HMMutableCharacteristicThresholdRangeEvent
impl ClassType for HMMutableCharacteristicThresholdRangeEvent
Source§const NAME: &'static str = "HMMutableCharacteristicThresholdRangeEvent"
const NAME: &'static str = "HMMutableCharacteristicThresholdRangeEvent"
Source§type Super = HMCharacteristicThresholdRangeEvent
type Super = HMCharacteristicThresholdRangeEvent
Source§type ThreadKind = <<HMMutableCharacteristicThresholdRangeEvent as ClassType>::Super as ClassType>::ThreadKind
type ThreadKind = <<HMMutableCharacteristicThresholdRangeEvent as ClassType>::Super as ClassType>::ThreadKind
Source§impl CopyingHelper for HMMutableCharacteristicThresholdRangeEvent
impl CopyingHelper for HMMutableCharacteristicThresholdRangeEvent
Source§type Result = HMCharacteristicThresholdRangeEvent
type Result = HMCharacteristicThresholdRangeEvent
Self if the type has no
immutable counterpart. Read moreSource§impl MutableCopyingHelper for HMMutableCharacteristicThresholdRangeEvent
impl MutableCopyingHelper for HMMutableCharacteristicThresholdRangeEvent
Source§type Result = HMMutableCharacteristicThresholdRangeEvent
type Result = HMMutableCharacteristicThresholdRangeEvent
Self if the type has no
mutable counterpart. Read moreSource§impl NSCopying for HMMutableCharacteristicThresholdRangeEvent
impl NSCopying for HMMutableCharacteristicThresholdRangeEvent
Source§impl NSMutableCopying for HMMutableCharacteristicThresholdRangeEvent
impl NSMutableCopying for HMMutableCharacteristicThresholdRangeEvent
Source§impl NSObjectProtocol for HMMutableCharacteristicThresholdRangeEvent
impl NSObjectProtocol for HMMutableCharacteristicThresholdRangeEvent
Source§fn isEqual(&self, other: Option<&AnyObject>) -> bool
fn isEqual(&self, other: Option<&AnyObject>) -> bool
Source§fn hash(&self) -> usize
fn hash(&self) -> usize
Source§fn isKindOfClass(&self, cls: &AnyClass) -> bool
fn isKindOfClass(&self, cls: &AnyClass) -> bool
Source§fn is_kind_of<T>(&self) -> bool
fn is_kind_of<T>(&self) -> bool
isKindOfClass directly, or cast your objects with AnyObject::downcast_ref