Type Alias TransformedNutsSettings

Source
pub type TransformedNutsSettings = NutsSettings<TransformedSettings>;

Aliased Type§

pub struct TransformedNutsSettings {
    pub num_tune: u64,
    pub num_draws: u64,
    pub maxdepth: u64,
    pub store_gradient: bool,
    pub store_unconstrained: bool,
    pub max_energy_error: f64,
    pub store_divergences: bool,
    pub adapt_options: TransformedSettings,
    pub check_turning: bool,
    pub num_chains: usize,
    pub seed: u64,
}

Fields§

§num_tune: u64

The number of tuning steps, where we fit the step size and mass matrix.

§num_draws: u64

The number of draws after tuning

§maxdepth: u64

The maximum tree depth during sampling. The number of leapfrog steps is smaller than 2 ^ maxdepth.

§store_gradient: bool

Store the gradient in the SampleStats

§store_unconstrained: bool

Store each unconstrained parameter vector in the sampler stats

§max_energy_error: f64

If the energy error is larger than this threshold we treat the leapfrog step as a divergence.

§store_divergences: bool

Store detailed information about each divergence in the sampler stats

§adapt_options: TransformedSettings

Settings for mass matrix adaptation.

§check_turning: bool§num_chains: usize§seed: u64

Trait Implementations§

Source§

impl Default for TransformedNutsSettings

Source§

fn default() -> Self

Returns the “default value” for a type. Read more
Source§

impl Settings for TransformedNutsSettings

Source§

type Chain<M: Math> = NutsChain<M, SmallRng, TransformAdaptation>

Source§

fn new_chain<M: Math, R: Rng + ?Sized>( &self, chain: u64, math: M, rng: &mut R, ) -> Self::Chain<M>

Source§

fn hint_num_tune(&self) -> usize

Source§

fn hint_num_draws(&self) -> usize

Source§

fn num_chains(&self) -> usize

Source§

fn seed(&self) -> u64

Source§

fn stats_options<M: Math>( &self, _chain: &Self::Chain<M>, ) -> <Self::Chain<M> as SamplerStats<M>>::StatOptions