Struct numeric_array::NumericArray
[−]
[src]
#[repr(C)]pub struct NumericArray<T, N: ArrayLength<T>>(_);
A numeric wrapper for a GenericArray
, allowing for easy numerical operations
on the whole sequence.
This has the added bonus of allowing SIMD optimizations for almost all operations
when compiled with RUSTFLAGS = "-C opt-level=3 -C target-cpu=native"
For example, adding together four-element NumericArray
's will result
in a single SIMD instruction for all elements at once.
Methods
impl<T, N: ArrayLength<T>> NumericArray<T, N>
[src]
pub fn new(arr: GenericArray<T, N>) -> NumericArray<T, N>
[src]
Creates a new NumericArray
instance from a GenericArray
instance.
Example:
#[macro_use] extern crate generic_array; extern crate numeric_array; use numeric_array::NumericArray; fn main() { let arr = NumericArray::new(arr![i32; 1, 2, 3, 4]); println!("{:?}", arr); // Prints 'NumericArray([1, 2, 3, 4])' }
pub fn into_array(self) -> GenericArray<T, N>
[src]
Consumes self and returns the internal GenericArray
instance
pub fn as_array(&self) -> &GenericArray<T, N>
[src]
Get reference to underlying GenericArray
instance.
pub fn as_mut_array(&mut self) -> &mut GenericArray<T, N>
[src]
Get mutable reference to underlying GenericArray
instance.
pub fn as_slice(&self) -> &[T]
[src]
Extracts a slice containing the entire array.
pub fn as_mut_slice(&mut self) -> &mut [T]
[src]
Extracts a mutable slice containing the entire array.
pub fn from_element(t: T) -> NumericArray<T, N> where
T: Clone,
[src]
T: Clone,
Creates a new array filled with a single value.
Example:
let a = NumericArray::new(arr![i32; 5, 5, 5, 5]); let b = NumericArray::from_element(5); assert_eq!(a, b);
Methods from Deref<Target = [T]>
pub fn len(&self) -> usize
1.0.0[src]
pub fn is_empty(&self) -> bool
1.0.0[src]
pub fn first(&self) -> Option<&T>
1.0.0[src]
Returns the first element of the slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());
pub fn first_mut(&mut self) -> Option<&mut T>
1.0.0[src]
Returns a mutable pointer to the first element of the slice, or None
if it is empty.
Examples
let x = &mut [0, 1, 2]; if let Some(first) = x.first_mut() { *first = 5; } assert_eq!(x, &[5, 1, 2]);
pub fn split_first(&self) -> Option<(&T, &[T])>
1.5.0[src]
Returns the first and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((first, elements)) = x.split_first() { assert_eq!(first, &0); assert_eq!(elements, &[1, 2]); }
pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>
1.5.0[src]
Returns the first and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &mut [0, 1, 2]; if let Some((first, elements)) = x.split_first_mut() { *first = 3; elements[0] = 4; elements[1] = 5; } assert_eq!(x, &[3, 4, 5]);
pub fn split_last(&self) -> Option<(&T, &[T])>
1.5.0[src]
Returns the last and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((last, elements)) = x.split_last() { assert_eq!(last, &2); assert_eq!(elements, &[0, 1]); }
pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>
1.5.0[src]
Returns the last and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &mut [0, 1, 2]; if let Some((last, elements)) = x.split_last_mut() { *last = 3; elements[0] = 4; elements[1] = 5; } assert_eq!(x, &[4, 5, 3]);
pub fn last(&self) -> Option<&T>
1.0.0[src]
Returns the last element of the slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());
pub fn last_mut(&mut self) -> Option<&mut T>
1.0.0[src]
Returns a mutable pointer to the last item in the slice.
Examples
let x = &mut [0, 1, 2]; if let Some(last) = x.last_mut() { *last = 10; } assert_eq!(x, &[0, 1, 10]);
pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>,
1.0.0[src]
I: SliceIndex<[T]>,
Returns a reference to an element or subslice depending on the type of index.
- If given a position, returns a reference to the element at that
position or
None
if out of bounds. - If given a range, returns the subslice corresponding to that range,
or
None
if out of bounds.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(Some(&[10, 40][..]), v.get(0..2)); assert_eq!(None, v.get(3)); assert_eq!(None, v.get(0..4));
pub fn get_mut<I>(
&mut self,
index: I
) -> Option<&mut <I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>,
1.0.0[src]
&mut self,
index: I
) -> Option<&mut <I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>,
Returns a mutable reference to an element or subslice depending on the
type of index (see get
) or None
if the index is out of bounds.
Examples
let x = &mut [0, 1, 2]; if let Some(elem) = x.get_mut(1) { *elem = 42; } assert_eq!(x, &[0, 42, 2]);
pub unsafe fn get_unchecked<I>(
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
1.0.0[src]
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
Returns a reference to an element or subslice, without doing bounds checking.
This is generally not recommended, use with caution! For a safe
alternative see get
.
Examples
let x = &[1, 2, 4]; unsafe { assert_eq!(x.get_unchecked(1), &2); }
pub unsafe fn get_unchecked_mut<I>(
&mut self,
index: I
) -> &mut <I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
1.0.0[src]
&mut self,
index: I
) -> &mut <I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
Returns a mutable reference to an element or subslice, without doing bounds checking.
This is generally not recommended, use with caution! For a safe
alternative see get_mut
.
Examples
let x = &mut [1, 2, 4]; unsafe { let elem = x.get_unchecked_mut(1); *elem = 13; } assert_eq!(x, &[1, 13, 4]);
pub fn as_ptr(&self) -> *const T
1.0.0[src]
Returns a raw pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &[1, 2, 4]; let x_ptr = x.as_ptr(); unsafe { for i in 0..x.len() { assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize)); } }
pub fn as_mut_ptr(&mut self) -> *mut T
1.0.0[src]
Returns an unsafe mutable pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &mut [1, 2, 4]; let x_ptr = x.as_mut_ptr(); unsafe { for i in 0..x.len() { *x_ptr.offset(i as isize) += 2; } } assert_eq!(x, &[3, 4, 6]);
pub fn swap(&mut self, a: usize, b: usize)
1.0.0[src]
Swaps two elements in the slice.
Arguments
- a - The index of the first element
- b - The index of the second element
Panics
Panics if a
or b
are out of bounds.
Examples
let mut v = ["a", "b", "c", "d"]; v.swap(1, 3); assert!(v == ["a", "d", "c", "b"]);
pub fn reverse(&mut self)
1.0.0[src]
Reverses the order of elements in the slice, in place.
Examples
let mut v = [1, 2, 3]; v.reverse(); assert!(v == [3, 2, 1]);
pub fn iter(&self) -> Iter<T>
1.0.0[src]
Returns an iterator over the slice.
Examples
let x = &[1, 2, 4]; let mut iterator = x.iter(); assert_eq!(iterator.next(), Some(&1)); assert_eq!(iterator.next(), Some(&2)); assert_eq!(iterator.next(), Some(&4)); assert_eq!(iterator.next(), None);
pub fn iter_mut(&mut self) -> IterMut<T>
1.0.0[src]
Returns an iterator that allows modifying each value.
Examples
let x = &mut [1, 2, 4]; for elem in x.iter_mut() { *elem += 2; } assert_eq!(x, &[3, 4, 6]);
pub fn windows(&self, size: usize) -> Windows<T>
1.0.0[src]
Returns an iterator over all contiguous windows of length
size
. The windows overlap. If the slice is shorter than
size
, the iterator returns no values.
Panics
Panics if size
is 0.
Examples
let slice = ['r', 'u', 's', 't']; let mut iter = slice.windows(2); assert_eq!(iter.next().unwrap(), &['r', 'u']); assert_eq!(iter.next().unwrap(), &['u', 's']); assert_eq!(iter.next().unwrap(), &['s', 't']); assert!(iter.next().is_none());
If the slice is shorter than size
:
let slice = ['f', 'o', 'o']; let mut iter = slice.windows(4); assert!(iter.next().is_none());
pub fn chunks(&self, chunk_size: usize) -> Chunks<T>
1.0.0[src]
Returns an iterator over chunk_size
elements of the slice at a
time. The chunks are slices and do not overlap. If chunk_size
does
not divide the length of the slice, then the last chunk will
not have length chunk_size
.
See exact_chunks
for a variant of this iterator that returns chunks
of always exactly chunk_size
elements.
Panics
Panics if chunk_size
is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert_eq!(iter.next().unwrap(), &['m']); assert!(iter.next().is_none());
pub fn exact_chunks(&self, chunk_size: usize) -> ExactChunks<T>
[src]
exact_chunks
)Returns an iterator over chunk_size
elements of the slice at a
time. The chunks are slices and do not overlap. If chunk_size
does
not divide the length of the slice, then the last up to chunk_size-1
elements will be omitted.
Due to each chunk having exactly chunk_size
elements, the compiler
can often optimize the resulting code better than in the case of
chunks
.
Panics
Panics if chunk_size
is 0.
Examples
#![feature(exact_chunks)] let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.exact_chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert!(iter.next().is_none());
pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>
1.0.0[src]
Returns an iterator over chunk_size
elements of the slice at a time.
The chunks are mutable slices, and do not overlap. If chunk_size
does
not divide the length of the slice, then the last chunk will not
have length chunk_size
.
See exact_chunks_mut
for a variant of this iterator that returns chunks
of always exactly chunk_size
elements.
Panics
Panics if chunk_size
is 0.
Examples
let v = &mut [0, 0, 0, 0, 0]; let mut count = 1; for chunk in v.chunks_mut(2) { for elem in chunk.iter_mut() { *elem += count; } count += 1; } assert_eq!(v, &[1, 1, 2, 2, 3]);
pub fn exact_chunks_mut(&mut self, chunk_size: usize) -> ExactChunksMut<T>
[src]
exact_chunks
)Returns an iterator over chunk_size
elements of the slice at a time.
The chunks are mutable slices, and do not overlap. If chunk_size
does
not divide the length of the slice, then the last up to chunk_size-1
elements will be omitted.
Due to each chunk having exactly chunk_size
elements, the compiler
can often optimize the resulting code better than in the case of
chunks_mut
.
Panics
Panics if chunk_size
is 0.
Examples
#![feature(exact_chunks)] let v = &mut [0, 0, 0, 0, 0]; let mut count = 1; for chunk in v.exact_chunks_mut(2) { for elem in chunk.iter_mut() { *elem += count; } count += 1; } assert_eq!(v, &[1, 1, 2, 2, 0]);
pub fn split_at(&self, mid: usize) -> (&[T], &[T])
1.0.0[src]
Divides one slice into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Examples
let v = [1, 2, 3, 4, 5, 6]; { let (left, right) = v.split_at(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); }
pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])
1.0.0[src]
Divides one mutable slice into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Examples
let mut v = [1, 0, 3, 0, 5, 6]; // scoped to restrict the lifetime of the borrows { let (left, right) = v.split_at_mut(2); assert!(left == [1, 0]); assert!(right == [3, 0, 5, 6]); left[1] = 2; right[1] = 4; } assert!(v == [1, 2, 3, 4, 5, 6]);
pub fn split<F>(&self, pred: F) -> Split<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
. The matched element is not contained in the subslices.
Examples
let slice = [10, 40, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:
let slice = [10, 40, 33]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[]); assert!(iter.next().is_none());
If two matched elements are directly adjacent, an empty slice will be present between them:
let slice = [10, 6, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10]); assert_eq!(iter.next().unwrap(), &[]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
F: FnMut(&T) -> bool,
Returns an iterator over mutable subslices separated by elements that
match pred
. The matched element is not contained in the subslices.
Examples
let mut v = [10, 40, 30, 20, 60, 50]; for group in v.split_mut(|num| *num % 3 == 0) { group[0] = 1; } assert_eq!(v, [1, 40, 30, 1, 60, 1]);
pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F> where
F: FnMut(&T) -> bool,
[src]
F: FnMut(&T) -> bool,
slice_rsplit
)Returns an iterator over subslices separated by elements that match
pred
, starting at the end of the slice and working backwards.
The matched element is not contained in the subslices.
Examples
#![feature(slice_rsplit)] let slice = [11, 22, 33, 0, 44, 55]; let mut iter = slice.rsplit(|num| *num == 0); assert_eq!(iter.next().unwrap(), &[44, 55]); assert_eq!(iter.next().unwrap(), &[11, 22, 33]); assert_eq!(iter.next(), None);
As with split()
, if the first or last element is matched, an empty
slice will be the first (or last) item returned by the iterator.
#![feature(slice_rsplit)] let v = &[0, 1, 1, 2, 3, 5, 8]; let mut it = v.rsplit(|n| *n % 2 == 0); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next().unwrap(), &[3, 5]); assert_eq!(it.next().unwrap(), &[1, 1]); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next(), None);
pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<T, F> where
F: FnMut(&T) -> bool,
[src]
F: FnMut(&T) -> bool,
slice_rsplit
)Returns an iterator over mutable subslices separated by elements that
match pred
, starting at the end of the slice and working
backwards. The matched element is not contained in the subslices.
Examples
#![feature(slice_rsplit)] let mut v = [100, 400, 300, 200, 600, 500]; let mut count = 0; for group in v.rsplit_mut(|num| *num % 3 == 0) { count += 1; group[0] = count; } assert_eq!(v, [3, 400, 300, 2, 600, 1]);
pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once by numbers divisible by 3 (i.e. [10, 40]
,
[20, 60, 50]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
let mut v = [10, 40, 30, 20, 60, 50]; for group in v.splitn_mut(2, |num| *num % 3 == 0) { group[0] = 1; } assert_eq!(v, [1, 40, 30, 1, 60, 50]);
pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e. [50]
, [10, 40, 30, 20]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where
F: FnMut(&T) -> bool,
1.0.0[src]
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
let mut s = [10, 40, 30, 20, 60, 50]; for group in s.rsplitn_mut(2, |num| *num % 3 == 0) { group[0] = 1; } assert_eq!(s, [1, 40, 30, 20, 60, 1]);
pub fn contains(&self, x: &T) -> bool where
T: PartialEq<T>,
1.0.0[src]
T: PartialEq<T>,
Returns true
if the slice contains an element with the given value.
Examples
let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));
pub fn starts_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>,
1.0.0[src]
T: PartialEq<T>,
Returns true
if needle
is a prefix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30]; assert!(v.starts_with(&[])); let v: &[u8] = &[]; assert!(v.starts_with(&[]));
pub fn ends_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>,
1.0.0[src]
T: PartialEq<T>,
Returns true
if needle
is a suffix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30]; assert!(v.ends_with(&[])); let v: &[u8] = &[]; assert!(v.ends_with(&[]));
pub fn binary_search(&self, x: &T) -> Result<usize, usize> where
T: Ord,
1.0.0[src]
T: Ord,
Binary searches this sorted slice for a given element.
If the value is found then Ok
is returned, containing the
index of the matching element; if the value is not found then
Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1...4) => true, _ => false, });
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where
F: FnMut(&'a T) -> Ordering,
1.0.0[src]
F: FnMut(&'a T) -> Ordering,
Binary searches this sorted slice with a comparator function.
The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is Less
,
Equal
or Greater
the desired target.
If a matching value is found then returns Ok
, containing
the index for the matched element; if no match is found then
Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1...4) => true, _ => false, });
pub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F
) -> Result<usize, usize> where
B: Ord,
F: FnMut(&'a T) -> B,
1.10.0[src]
&'a self,
b: &B,
f: F
) -> Result<usize, usize> where
B: Ord,
F: FnMut(&'a T) -> B,
Binary searches this sorted slice with a key extraction function.
Assumes that the slice is sorted by the key, for instance with
sort_by_key
using the same key extraction function.
If a matching value is found then returns Ok
, containing the
index for the matched element; if no match is found then Err
is returned, containing the index where a matching element could
be inserted while maintaining sorted order.
Examples
Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in [1, 4]
.
let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), (1, 21), (2, 34), (4, 55)]; assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); let r = s.binary_search_by_key(&1, |&(a,b)| b); assert!(match r { Ok(1...4) => true, _ => false, });
pub fn sort(&mut self) where
T: Ord,
1.0.0[src]
T: Ord,
Sorts the slice.
This sort is stable (i.e. does not reorder equal elements) and O(n log n)
worst-case.
When applicable, unstable sorting is preferred because it is generally faster than stable
sorting and it doesn't allocate auxiliary memory.
See sort_unstable
.
Current implementation
The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.
Also, it allocates temporary storage half the size of self
, but for short slices a
non-allocating insertion sort is used instead.
Examples
let mut v = [-5, 4, 1, -3, 2]; v.sort(); assert!(v == [-5, -3, 1, 2, 4]);
pub fn sort_by<F>(&mut self, compare: F) where
F: FnMut(&T, &T) -> Ordering,
1.0.0[src]
F: FnMut(&T, &T) -> Ordering,
Sorts the slice with a comparator function.
This sort is stable (i.e. does not reorder equal elements) and O(n log n)
worst-case.
When applicable, unstable sorting is preferred because it is generally faster than stable
sorting and it doesn't allocate auxiliary memory.
See sort_unstable_by
.
Current implementation
The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.
Also, it allocates temporary storage half the size of self
, but for short slices a
non-allocating insertion sort is used instead.
Examples
let mut v = [5, 4, 1, 3, 2]; v.sort_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]);
pub fn sort_by_key<B, F>(&mut self, f: F) where
B: Ord,
F: FnMut(&T) -> B,
1.7.0[src]
B: Ord,
F: FnMut(&T) -> B,
Sorts the slice with a key extraction function.
This sort is stable (i.e. does not reorder equal elements) and O(n log n)
worst-case.
When applicable, unstable sorting is preferred because it is generally faster than stable
sorting and it doesn't allocate auxiliary memory.
See sort_unstable_by_key
.
Current implementation
The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.
Also, it allocates temporary storage half the size of self
, but for short slices a
non-allocating insertion sort is used instead.
Examples
let mut v = [-5i32, 4, 1, -3, 2]; v.sort_by_key(|k| k.abs()); assert!(v == [1, 2, -3, 4, -5]);
pub fn sort_unstable(&mut self) where
T: Ord,
1.20.0[src]
T: Ord,
Sorts the slice, but may not preserve the order of equal elements.
This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
and O(n log n)
worst-case.
Current implementation
The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.
It is typically faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.
Examples
let mut v = [-5, 4, 1, -3, 2]; v.sort_unstable(); assert!(v == [-5, -3, 1, 2, 4]);
pub fn sort_unstable_by<F>(&mut self, compare: F) where
F: FnMut(&T, &T) -> Ordering,
1.20.0[src]
F: FnMut(&T, &T) -> Ordering,
Sorts the slice with a comparator function, but may not preserve the order of equal elements.
This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
and O(n log n)
worst-case.
Current implementation
The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.
It is typically faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.
Examples
let mut v = [5, 4, 1, 3, 2]; v.sort_unstable_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_unstable_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]);
pub fn sort_unstable_by_key<B, F>(&mut self, f: F) where
B: Ord,
F: FnMut(&T) -> B,
1.20.0[src]
B: Ord,
F: FnMut(&T) -> B,
Sorts the slice with a key extraction function, but may not preserve the order of equal elements.
This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
and O(n log n)
worst-case.
Current implementation
The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.
It is typically faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.
Examples
let mut v = [-5i32, 4, 1, -3, 2]; v.sort_unstable_by_key(|k| k.abs()); assert!(v == [1, 2, -3, 4, -5]);
pub fn rotate_left(&mut self, mid: usize)
1.26.0[src]
Rotates the slice in-place such that the first mid
elements of the
slice move to the end while the last self.len() - mid
elements move to
the front. After calling rotate_left
, the element previously at index
mid
will become the first element in the slice.
Panics
This function will panic if mid
is greater than the length of the
slice. Note that mid == self.len()
does not panic and is a no-op
rotation.
Complexity
Takes linear (in self.len()
) time.
Examples
let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; a.rotate_left(2); assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
Rotating a subslice:
let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; a[1..5].rotate_left(1); assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
pub fn rotate_right(&mut self, k: usize)
1.26.0[src]
Rotates the slice in-place such that the first self.len() - k
elements of the slice move to the end while the last k
elements move
to the front. After calling rotate_right
, the element previously at
index self.len() - k
will become the first element in the slice.
Panics
This function will panic if k
is greater than the length of the
slice. Note that k == self.len()
does not panic and is a no-op
rotation.
Complexity
Takes linear (in self.len()
) time.
Examples
let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; a.rotate_right(2); assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
Rotate a subslice:
let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; a[1..5].rotate_right(1); assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
pub fn clone_from_slice(&mut self, src: &[T]) where
T: Clone,
1.7.0[src]
T: Clone,
Copies the elements from src
into self
.
The length of src
must be the same as self
.
If src
implements Copy
, it can be more performant to use
copy_from_slice
.
Panics
This function will panic if the two slices have different lengths.
Examples
Cloning two elements from a slice into another:
let src = [1, 2, 3, 4]; let mut dst = [0, 0]; dst.clone_from_slice(&src[2..]); assert_eq!(src, [1, 2, 3, 4]); assert_eq!(dst, [3, 4]);
Rust enforces that there can only be one mutable reference with no
immutable references to a particular piece of data in a particular
scope. Because of this, attempting to use clone_from_slice
on a
single slice will result in a compile failure:
let mut slice = [1, 2, 3, 4, 5]; slice[..2].clone_from_slice(&slice[3..]); // compile fail!
To work around this, we can use split_at_mut
to create two distinct
sub-slices from a slice:
let mut slice = [1, 2, 3, 4, 5]; { let (left, right) = slice.split_at_mut(2); left.clone_from_slice(&right[1..]); } assert_eq!(slice, [4, 5, 3, 4, 5]);
pub fn copy_from_slice(&mut self, src: &[T]) where
T: Copy,
1.9.0[src]
T: Copy,
Copies all elements from src
into self
, using a memcpy.
The length of src
must be the same as self
.
If src
does not implement Copy
, use clone_from_slice
.
Panics
This function will panic if the two slices have different lengths.
Examples
Copying two elements from a slice into another:
let src = [1, 2, 3, 4]; let mut dst = [0, 0]; dst.copy_from_slice(&src[2..]); assert_eq!(src, [1, 2, 3, 4]); assert_eq!(dst, [3, 4]);
Rust enforces that there can only be one mutable reference with no
immutable references to a particular piece of data in a particular
scope. Because of this, attempting to use copy_from_slice
on a
single slice will result in a compile failure:
let mut slice = [1, 2, 3, 4, 5]; slice[..2].copy_from_slice(&slice[3..]); // compile fail!
To work around this, we can use split_at_mut
to create two distinct
sub-slices from a slice:
let mut slice = [1, 2, 3, 4, 5]; { let (left, right) = slice.split_at_mut(2); left.copy_from_slice(&right[1..]); } assert_eq!(slice, [4, 5, 3, 4, 5]);
pub fn swap_with_slice(&mut self, other: &mut [T])
[src]
swap_with_slice
)Swaps all elements in self
with those in other
.
The length of other
must be the same as self
.
Panics
This function will panic if the two slices have different lengths.
Example
Swapping two elements across slices:
#![feature(swap_with_slice)] let mut slice1 = [0, 0]; let mut slice2 = [1, 2, 3, 4]; slice1.swap_with_slice(&mut slice2[2..]); assert_eq!(slice1, [3, 4]); assert_eq!(slice2, [1, 2, 0, 0]);
Rust enforces that there can only be one mutable reference to a
particular piece of data in a particular scope. Because of this,
attempting to use swap_with_slice
on a single slice will result in
a compile failure:
#![feature(swap_with_slice)] let mut slice = [1, 2, 3, 4, 5]; slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
To work around this, we can use split_at_mut
to create two distinct
mutable sub-slices from a slice:
#![feature(swap_with_slice)] let mut slice = [1, 2, 3, 4, 5]; { let (left, right) = slice.split_at_mut(2); left.swap_with_slice(&mut right[1..]); } assert_eq!(slice, [4, 5, 3, 1, 2]);
pub fn to_vec(&self) -> Vec<T> where
T: Clone,
1.0.0[src]
T: Clone,
Copies self
into a new Vec
.
Examples
let s = [10, 40, 30]; let x = s.to_vec(); // Here, `s` and `x` can be modified independently.
Trait Implementations
impl<T, N: ArrayLength<T>> Inv for NumericArray<T, N> where
T: Inv,
N: ArrayLength<<T as Inv>::Output>,
[src]
T: Inv,
N: ArrayLength<<T as Inv>::Output>,
type Output = NumericArray<<T as Inv>::Output, N>
The result after applying the operator.
fn inv(self) -> Self::Output
[src]
Returns the multiplicative inverse of self
. Read more
impl<'a, T: Clone, N: ArrayLength<T>> Inv for &'a NumericArray<T, N> where
T: Inv,
N: ArrayLength<<T as Inv>::Output>,
[src]
T: Inv,
N: ArrayLength<<T as Inv>::Output>,
type Output = NumericArray<<T as Inv>::Output, N>
The result after applying the operator.
fn inv(self) -> Self::Output
[src]
Returns the multiplicative inverse of self
. Read more
impl<T, N: ArrayLength<T>> Neg for NumericArray<T, N> where
T: Neg,
N: ArrayLength<<T as Neg>::Output>,
[src]
T: Neg,
N: ArrayLength<<T as Neg>::Output>,
type Output = NumericArray<<T as Neg>::Output, N>
The resulting type after applying the -
operator.
fn neg(self) -> Self::Output
[src]
Performs the unary -
operation.
impl<'a, T: Clone, N: ArrayLength<T>> Neg for &'a NumericArray<T, N> where
T: Neg,
N: ArrayLength<<T as Neg>::Output>,
[src]
T: Neg,
N: ArrayLength<<T as Neg>::Output>,
type Output = NumericArray<<T as Neg>::Output, N>
The resulting type after applying the -
operator.
fn neg(self) -> Self::Output
[src]
Performs the unary -
operation.
impl<T, N: ArrayLength<T>> Not for NumericArray<T, N> where
T: Not,
N: ArrayLength<<T as Not>::Output>,
[src]
T: Not,
N: ArrayLength<<T as Not>::Output>,
type Output = NumericArray<<T as Not>::Output, N>
The resulting type after applying the !
operator.
fn not(self) -> Self::Output
[src]
Performs the unary !
operation.
impl<'a, T: Clone, N: ArrayLength<T>> Not for &'a NumericArray<T, N> where
T: Not,
N: ArrayLength<<T as Not>::Output>,
[src]
T: Not,
N: ArrayLength<<T as Not>::Output>,
type Output = NumericArray<<T as Not>::Output, N>
The resulting type after applying the !
operator.
fn not(self) -> Self::Output
[src]
Performs the unary !
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> Pow<NumericArray<U, N>> for NumericArray<T, N> where
T: Pow<U>,
N: ArrayLength<<T as Pow<U>>::Output>,
[src]
T: Pow<U>,
N: ArrayLength<<T as Pow<U>>::Output>,
type Output = NumericArray<<T as Pow<U>>::Output, N>
The result after applying the operator.
fn pow(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Returns self
to the power rhs
. Read more
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> Pow<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: Pow<U>,
N: ArrayLength<<T as Pow<U>>::Output>,
[src]
T: Pow<U>,
N: ArrayLength<<T as Pow<U>>::Output>,
type Output = NumericArray<<T as Pow<U>>::Output, N>
The result after applying the operator.
fn pow(self, rhs: &'a NumericArray<U, N>) -> Self::Output
[src]
Returns self
to the power rhs
. Read more
impl<'a, T: Clone, U, N: ArrayLength<T> + ArrayLength<U>> Pow<NumericArray<U, N>> for &'a NumericArray<T, N> where
T: Pow<U>,
N: ArrayLength<<T as Pow<U>>::Output>,
[src]
T: Pow<U>,
N: ArrayLength<<T as Pow<U>>::Output>,
type Output = NumericArray<<T as Pow<U>>::Output, N>
The result after applying the operator.
fn pow(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Returns self
to the power rhs
. Read more
impl<'a, 'b, T: Clone, U: Clone, N: ArrayLength<T> + ArrayLength<U>> Pow<&'b NumericArray<U, N>> for &'a NumericArray<T, N> where
T: Pow<U>,
N: ArrayLength<<T as Pow<U>>::Output>,
[src]
T: Pow<U>,
N: ArrayLength<<T as Pow<U>>::Output>,
type Output = NumericArray<<T as Pow<U>>::Output, N>
The result after applying the operator.
fn pow(self, rhs: &'b NumericArray<U, N>) -> Self::Output
[src]
Returns self
to the power rhs
. Read more
impl<T, U: Clone, N: ArrayLength<T>> Pow<NumericConstant<U>> for NumericArray<T, N> where
T: Pow<U>,
N: ArrayLength<<T as Pow<U>>::Output>,
[src]
T: Pow<U>,
N: ArrayLength<<T as Pow<U>>::Output>,
type Output = NumericArray<<T as Pow<U>>::Output, N>
The result after applying the operator.
fn pow(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Returns self
to the power rhs
. Read more
impl<'a, T: Clone, U: Clone, N: ArrayLength<T>> Pow<NumericConstant<U>> for &'a NumericArray<T, N> where
T: Pow<U>,
N: ArrayLength<<T as Pow<U>>::Output>,
[src]
T: Pow<U>,
N: ArrayLength<<T as Pow<U>>::Output>,
type Output = NumericArray<<T as Pow<U>>::Output, N>
The result after applying the operator.
fn pow(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Returns self
to the power rhs
. Read more
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> Add<NumericArray<U, N>> for NumericArray<T, N> where
T: Add<U>,
N: ArrayLength<<T as Add<U>>::Output>,
[src]
T: Add<U>,
N: ArrayLength<<T as Add<U>>::Output>,
type Output = NumericArray<<T as Add<U>>::Output, N>
The resulting type after applying the +
operator.
fn add(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the +
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> Add<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: Add<U>,
N: ArrayLength<<T as Add<U>>::Output>,
[src]
T: Add<U>,
N: ArrayLength<<T as Add<U>>::Output>,
type Output = NumericArray<<T as Add<U>>::Output, N>
The resulting type after applying the +
operator.
fn add(self, rhs: &'a NumericArray<U, N>) -> Self::Output
[src]
Performs the +
operation.
impl<'a, T: Clone, U, N: ArrayLength<T> + ArrayLength<U>> Add<NumericArray<U, N>> for &'a NumericArray<T, N> where
T: Add<U>,
N: ArrayLength<<T as Add<U>>::Output>,
[src]
T: Add<U>,
N: ArrayLength<<T as Add<U>>::Output>,
type Output = NumericArray<<T as Add<U>>::Output, N>
The resulting type after applying the +
operator.
fn add(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the +
operation.
impl<'a, 'b, T: Clone, U: Clone, N: ArrayLength<T> + ArrayLength<U>> Add<&'b NumericArray<U, N>> for &'a NumericArray<T, N> where
T: Add<U>,
N: ArrayLength<<T as Add<U>>::Output>,
[src]
T: Add<U>,
N: ArrayLength<<T as Add<U>>::Output>,
type Output = NumericArray<<T as Add<U>>::Output, N>
The resulting type after applying the +
operator.
fn add(self, rhs: &'b NumericArray<U, N>) -> Self::Output
[src]
Performs the +
operation.
impl<T, U: Clone, N: ArrayLength<T>> Add<NumericConstant<U>> for NumericArray<T, N> where
T: Add<U>,
N: ArrayLength<<T as Add<U>>::Output>,
[src]
T: Add<U>,
N: ArrayLength<<T as Add<U>>::Output>,
type Output = NumericArray<<T as Add<U>>::Output, N>
The resulting type after applying the +
operator.
fn add(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the +
operation.
impl<'a, T: Clone, U: Clone, N: ArrayLength<T>> Add<NumericConstant<U>> for &'a NumericArray<T, N> where
T: Add<U>,
N: ArrayLength<<T as Add<U>>::Output>,
[src]
T: Add<U>,
N: ArrayLength<<T as Add<U>>::Output>,
type Output = NumericArray<<T as Add<U>>::Output, N>
The resulting type after applying the +
operator.
fn add(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the +
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> Sub<NumericArray<U, N>> for NumericArray<T, N> where
T: Sub<U>,
N: ArrayLength<<T as Sub<U>>::Output>,
[src]
T: Sub<U>,
N: ArrayLength<<T as Sub<U>>::Output>,
type Output = NumericArray<<T as Sub<U>>::Output, N>
The resulting type after applying the -
operator.
fn sub(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the -
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> Sub<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: Sub<U>,
N: ArrayLength<<T as Sub<U>>::Output>,
[src]
T: Sub<U>,
N: ArrayLength<<T as Sub<U>>::Output>,
type Output = NumericArray<<T as Sub<U>>::Output, N>
The resulting type after applying the -
operator.
fn sub(self, rhs: &'a NumericArray<U, N>) -> Self::Output
[src]
Performs the -
operation.
impl<'a, T: Clone, U, N: ArrayLength<T> + ArrayLength<U>> Sub<NumericArray<U, N>> for &'a NumericArray<T, N> where
T: Sub<U>,
N: ArrayLength<<T as Sub<U>>::Output>,
[src]
T: Sub<U>,
N: ArrayLength<<T as Sub<U>>::Output>,
type Output = NumericArray<<T as Sub<U>>::Output, N>
The resulting type after applying the -
operator.
fn sub(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the -
operation.
impl<'a, 'b, T: Clone, U: Clone, N: ArrayLength<T> + ArrayLength<U>> Sub<&'b NumericArray<U, N>> for &'a NumericArray<T, N> where
T: Sub<U>,
N: ArrayLength<<T as Sub<U>>::Output>,
[src]
T: Sub<U>,
N: ArrayLength<<T as Sub<U>>::Output>,
type Output = NumericArray<<T as Sub<U>>::Output, N>
The resulting type after applying the -
operator.
fn sub(self, rhs: &'b NumericArray<U, N>) -> Self::Output
[src]
Performs the -
operation.
impl<T, U: Clone, N: ArrayLength<T>> Sub<NumericConstant<U>> for NumericArray<T, N> where
T: Sub<U>,
N: ArrayLength<<T as Sub<U>>::Output>,
[src]
T: Sub<U>,
N: ArrayLength<<T as Sub<U>>::Output>,
type Output = NumericArray<<T as Sub<U>>::Output, N>
The resulting type after applying the -
operator.
fn sub(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the -
operation.
impl<'a, T: Clone, U: Clone, N: ArrayLength<T>> Sub<NumericConstant<U>> for &'a NumericArray<T, N> where
T: Sub<U>,
N: ArrayLength<<T as Sub<U>>::Output>,
[src]
T: Sub<U>,
N: ArrayLength<<T as Sub<U>>::Output>,
type Output = NumericArray<<T as Sub<U>>::Output, N>
The resulting type after applying the -
operator.
fn sub(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the -
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> Mul<NumericArray<U, N>> for NumericArray<T, N> where
T: Mul<U>,
N: ArrayLength<<T as Mul<U>>::Output>,
[src]
T: Mul<U>,
N: ArrayLength<<T as Mul<U>>::Output>,
type Output = NumericArray<<T as Mul<U>>::Output, N>
The resulting type after applying the *
operator.
fn mul(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> Mul<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: Mul<U>,
N: ArrayLength<<T as Mul<U>>::Output>,
[src]
T: Mul<U>,
N: ArrayLength<<T as Mul<U>>::Output>,
type Output = NumericArray<<T as Mul<U>>::Output, N>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'a NumericArray<U, N>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, T: Clone, U, N: ArrayLength<T> + ArrayLength<U>> Mul<NumericArray<U, N>> for &'a NumericArray<T, N> where
T: Mul<U>,
N: ArrayLength<<T as Mul<U>>::Output>,
[src]
T: Mul<U>,
N: ArrayLength<<T as Mul<U>>::Output>,
type Output = NumericArray<<T as Mul<U>>::Output, N>
The resulting type after applying the *
operator.
fn mul(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, 'b, T: Clone, U: Clone, N: ArrayLength<T> + ArrayLength<U>> Mul<&'b NumericArray<U, N>> for &'a NumericArray<T, N> where
T: Mul<U>,
N: ArrayLength<<T as Mul<U>>::Output>,
[src]
T: Mul<U>,
N: ArrayLength<<T as Mul<U>>::Output>,
type Output = NumericArray<<T as Mul<U>>::Output, N>
The resulting type after applying the *
operator.
fn mul(self, rhs: &'b NumericArray<U, N>) -> Self::Output
[src]
Performs the *
operation.
impl<T, U: Clone, N: ArrayLength<T>> Mul<NumericConstant<U>> for NumericArray<T, N> where
T: Mul<U>,
N: ArrayLength<<T as Mul<U>>::Output>,
[src]
T: Mul<U>,
N: ArrayLength<<T as Mul<U>>::Output>,
type Output = NumericArray<<T as Mul<U>>::Output, N>
The resulting type after applying the *
operator.
fn mul(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the *
operation.
impl<'a, T: Clone, U: Clone, N: ArrayLength<T>> Mul<NumericConstant<U>> for &'a NumericArray<T, N> where
T: Mul<U>,
N: ArrayLength<<T as Mul<U>>::Output>,
[src]
T: Mul<U>,
N: ArrayLength<<T as Mul<U>>::Output>,
type Output = NumericArray<<T as Mul<U>>::Output, N>
The resulting type after applying the *
operator.
fn mul(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the *
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> Div<NumericArray<U, N>> for NumericArray<T, N> where
T: Div<U>,
N: ArrayLength<<T as Div<U>>::Output>,
[src]
T: Div<U>,
N: ArrayLength<<T as Div<U>>::Output>,
type Output = NumericArray<<T as Div<U>>::Output, N>
The resulting type after applying the /
operator.
fn div(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the /
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> Div<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: Div<U>,
N: ArrayLength<<T as Div<U>>::Output>,
[src]
T: Div<U>,
N: ArrayLength<<T as Div<U>>::Output>,
type Output = NumericArray<<T as Div<U>>::Output, N>
The resulting type after applying the /
operator.
fn div(self, rhs: &'a NumericArray<U, N>) -> Self::Output
[src]
Performs the /
operation.
impl<'a, T: Clone, U, N: ArrayLength<T> + ArrayLength<U>> Div<NumericArray<U, N>> for &'a NumericArray<T, N> where
T: Div<U>,
N: ArrayLength<<T as Div<U>>::Output>,
[src]
T: Div<U>,
N: ArrayLength<<T as Div<U>>::Output>,
type Output = NumericArray<<T as Div<U>>::Output, N>
The resulting type after applying the /
operator.
fn div(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the /
operation.
impl<'a, 'b, T: Clone, U: Clone, N: ArrayLength<T> + ArrayLength<U>> Div<&'b NumericArray<U, N>> for &'a NumericArray<T, N> where
T: Div<U>,
N: ArrayLength<<T as Div<U>>::Output>,
[src]
T: Div<U>,
N: ArrayLength<<T as Div<U>>::Output>,
type Output = NumericArray<<T as Div<U>>::Output, N>
The resulting type after applying the /
operator.
fn div(self, rhs: &'b NumericArray<U, N>) -> Self::Output
[src]
Performs the /
operation.
impl<T, U: Clone, N: ArrayLength<T>> Div<NumericConstant<U>> for NumericArray<T, N> where
T: Div<U>,
N: ArrayLength<<T as Div<U>>::Output>,
[src]
T: Div<U>,
N: ArrayLength<<T as Div<U>>::Output>,
type Output = NumericArray<<T as Div<U>>::Output, N>
The resulting type after applying the /
operator.
fn div(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the /
operation.
impl<'a, T: Clone, U: Clone, N: ArrayLength<T>> Div<NumericConstant<U>> for &'a NumericArray<T, N> where
T: Div<U>,
N: ArrayLength<<T as Div<U>>::Output>,
[src]
T: Div<U>,
N: ArrayLength<<T as Div<U>>::Output>,
type Output = NumericArray<<T as Div<U>>::Output, N>
The resulting type after applying the /
operator.
fn div(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the /
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> Rem<NumericArray<U, N>> for NumericArray<T, N> where
T: Rem<U>,
N: ArrayLength<<T as Rem<U>>::Output>,
[src]
T: Rem<U>,
N: ArrayLength<<T as Rem<U>>::Output>,
type Output = NumericArray<<T as Rem<U>>::Output, N>
The resulting type after applying the %
operator.
fn rem(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the %
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> Rem<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: Rem<U>,
N: ArrayLength<<T as Rem<U>>::Output>,
[src]
T: Rem<U>,
N: ArrayLength<<T as Rem<U>>::Output>,
type Output = NumericArray<<T as Rem<U>>::Output, N>
The resulting type after applying the %
operator.
fn rem(self, rhs: &'a NumericArray<U, N>) -> Self::Output
[src]
Performs the %
operation.
impl<'a, T: Clone, U, N: ArrayLength<T> + ArrayLength<U>> Rem<NumericArray<U, N>> for &'a NumericArray<T, N> where
T: Rem<U>,
N: ArrayLength<<T as Rem<U>>::Output>,
[src]
T: Rem<U>,
N: ArrayLength<<T as Rem<U>>::Output>,
type Output = NumericArray<<T as Rem<U>>::Output, N>
The resulting type after applying the %
operator.
fn rem(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the %
operation.
impl<'a, 'b, T: Clone, U: Clone, N: ArrayLength<T> + ArrayLength<U>> Rem<&'b NumericArray<U, N>> for &'a NumericArray<T, N> where
T: Rem<U>,
N: ArrayLength<<T as Rem<U>>::Output>,
[src]
T: Rem<U>,
N: ArrayLength<<T as Rem<U>>::Output>,
type Output = NumericArray<<T as Rem<U>>::Output, N>
The resulting type after applying the %
operator.
fn rem(self, rhs: &'b NumericArray<U, N>) -> Self::Output
[src]
Performs the %
operation.
impl<T, U: Clone, N: ArrayLength<T>> Rem<NumericConstant<U>> for NumericArray<T, N> where
T: Rem<U>,
N: ArrayLength<<T as Rem<U>>::Output>,
[src]
T: Rem<U>,
N: ArrayLength<<T as Rem<U>>::Output>,
type Output = NumericArray<<T as Rem<U>>::Output, N>
The resulting type after applying the %
operator.
fn rem(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the %
operation.
impl<'a, T: Clone, U: Clone, N: ArrayLength<T>> Rem<NumericConstant<U>> for &'a NumericArray<T, N> where
T: Rem<U>,
N: ArrayLength<<T as Rem<U>>::Output>,
[src]
T: Rem<U>,
N: ArrayLength<<T as Rem<U>>::Output>,
type Output = NumericArray<<T as Rem<U>>::Output, N>
The resulting type after applying the %
operator.
fn rem(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the %
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> BitAnd<NumericArray<U, N>> for NumericArray<T, N> where
T: BitAnd<U>,
N: ArrayLength<<T as BitAnd<U>>::Output>,
[src]
T: BitAnd<U>,
N: ArrayLength<<T as BitAnd<U>>::Output>,
type Output = NumericArray<<T as BitAnd<U>>::Output, N>
The resulting type after applying the &
operator.
fn bitand(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the &
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> BitAnd<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: BitAnd<U>,
N: ArrayLength<<T as BitAnd<U>>::Output>,
[src]
T: BitAnd<U>,
N: ArrayLength<<T as BitAnd<U>>::Output>,
type Output = NumericArray<<T as BitAnd<U>>::Output, N>
The resulting type after applying the &
operator.
fn bitand(self, rhs: &'a NumericArray<U, N>) -> Self::Output
[src]
Performs the &
operation.
impl<'a, T: Clone, U, N: ArrayLength<T> + ArrayLength<U>> BitAnd<NumericArray<U, N>> for &'a NumericArray<T, N> where
T: BitAnd<U>,
N: ArrayLength<<T as BitAnd<U>>::Output>,
[src]
T: BitAnd<U>,
N: ArrayLength<<T as BitAnd<U>>::Output>,
type Output = NumericArray<<T as BitAnd<U>>::Output, N>
The resulting type after applying the &
operator.
fn bitand(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the &
operation.
impl<'a, 'b, T: Clone, U: Clone, N: ArrayLength<T> + ArrayLength<U>> BitAnd<&'b NumericArray<U, N>> for &'a NumericArray<T, N> where
T: BitAnd<U>,
N: ArrayLength<<T as BitAnd<U>>::Output>,
[src]
T: BitAnd<U>,
N: ArrayLength<<T as BitAnd<U>>::Output>,
type Output = NumericArray<<T as BitAnd<U>>::Output, N>
The resulting type after applying the &
operator.
fn bitand(self, rhs: &'b NumericArray<U, N>) -> Self::Output
[src]
Performs the &
operation.
impl<T, U: Clone, N: ArrayLength<T>> BitAnd<NumericConstant<U>> for NumericArray<T, N> where
T: BitAnd<U>,
N: ArrayLength<<T as BitAnd<U>>::Output>,
[src]
T: BitAnd<U>,
N: ArrayLength<<T as BitAnd<U>>::Output>,
type Output = NumericArray<<T as BitAnd<U>>::Output, N>
The resulting type after applying the &
operator.
fn bitand(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the &
operation.
impl<'a, T: Clone, U: Clone, N: ArrayLength<T>> BitAnd<NumericConstant<U>> for &'a NumericArray<T, N> where
T: BitAnd<U>,
N: ArrayLength<<T as BitAnd<U>>::Output>,
[src]
T: BitAnd<U>,
N: ArrayLength<<T as BitAnd<U>>::Output>,
type Output = NumericArray<<T as BitAnd<U>>::Output, N>
The resulting type after applying the &
operator.
fn bitand(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the &
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> BitOr<NumericArray<U, N>> for NumericArray<T, N> where
T: BitOr<U>,
N: ArrayLength<<T as BitOr<U>>::Output>,
[src]
T: BitOr<U>,
N: ArrayLength<<T as BitOr<U>>::Output>,
type Output = NumericArray<<T as BitOr<U>>::Output, N>
The resulting type after applying the |
operator.
fn bitor(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the |
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> BitOr<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: BitOr<U>,
N: ArrayLength<<T as BitOr<U>>::Output>,
[src]
T: BitOr<U>,
N: ArrayLength<<T as BitOr<U>>::Output>,
type Output = NumericArray<<T as BitOr<U>>::Output, N>
The resulting type after applying the |
operator.
fn bitor(self, rhs: &'a NumericArray<U, N>) -> Self::Output
[src]
Performs the |
operation.
impl<'a, T: Clone, U, N: ArrayLength<T> + ArrayLength<U>> BitOr<NumericArray<U, N>> for &'a NumericArray<T, N> where
T: BitOr<U>,
N: ArrayLength<<T as BitOr<U>>::Output>,
[src]
T: BitOr<U>,
N: ArrayLength<<T as BitOr<U>>::Output>,
type Output = NumericArray<<T as BitOr<U>>::Output, N>
The resulting type after applying the |
operator.
fn bitor(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the |
operation.
impl<'a, 'b, T: Clone, U: Clone, N: ArrayLength<T> + ArrayLength<U>> BitOr<&'b NumericArray<U, N>> for &'a NumericArray<T, N> where
T: BitOr<U>,
N: ArrayLength<<T as BitOr<U>>::Output>,
[src]
T: BitOr<U>,
N: ArrayLength<<T as BitOr<U>>::Output>,
type Output = NumericArray<<T as BitOr<U>>::Output, N>
The resulting type after applying the |
operator.
fn bitor(self, rhs: &'b NumericArray<U, N>) -> Self::Output
[src]
Performs the |
operation.
impl<T, U: Clone, N: ArrayLength<T>> BitOr<NumericConstant<U>> for NumericArray<T, N> where
T: BitOr<U>,
N: ArrayLength<<T as BitOr<U>>::Output>,
[src]
T: BitOr<U>,
N: ArrayLength<<T as BitOr<U>>::Output>,
type Output = NumericArray<<T as BitOr<U>>::Output, N>
The resulting type after applying the |
operator.
fn bitor(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the |
operation.
impl<'a, T: Clone, U: Clone, N: ArrayLength<T>> BitOr<NumericConstant<U>> for &'a NumericArray<T, N> where
T: BitOr<U>,
N: ArrayLength<<T as BitOr<U>>::Output>,
[src]
T: BitOr<U>,
N: ArrayLength<<T as BitOr<U>>::Output>,
type Output = NumericArray<<T as BitOr<U>>::Output, N>
The resulting type after applying the |
operator.
fn bitor(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the |
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> BitXor<NumericArray<U, N>> for NumericArray<T, N> where
T: BitXor<U>,
N: ArrayLength<<T as BitXor<U>>::Output>,
[src]
T: BitXor<U>,
N: ArrayLength<<T as BitXor<U>>::Output>,
type Output = NumericArray<<T as BitXor<U>>::Output, N>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the ^
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> BitXor<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: BitXor<U>,
N: ArrayLength<<T as BitXor<U>>::Output>,
[src]
T: BitXor<U>,
N: ArrayLength<<T as BitXor<U>>::Output>,
type Output = NumericArray<<T as BitXor<U>>::Output, N>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &'a NumericArray<U, N>) -> Self::Output
[src]
Performs the ^
operation.
impl<'a, T: Clone, U, N: ArrayLength<T> + ArrayLength<U>> BitXor<NumericArray<U, N>> for &'a NumericArray<T, N> where
T: BitXor<U>,
N: ArrayLength<<T as BitXor<U>>::Output>,
[src]
T: BitXor<U>,
N: ArrayLength<<T as BitXor<U>>::Output>,
type Output = NumericArray<<T as BitXor<U>>::Output, N>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the ^
operation.
impl<'a, 'b, T: Clone, U: Clone, N: ArrayLength<T> + ArrayLength<U>> BitXor<&'b NumericArray<U, N>> for &'a NumericArray<T, N> where
T: BitXor<U>,
N: ArrayLength<<T as BitXor<U>>::Output>,
[src]
T: BitXor<U>,
N: ArrayLength<<T as BitXor<U>>::Output>,
type Output = NumericArray<<T as BitXor<U>>::Output, N>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: &'b NumericArray<U, N>) -> Self::Output
[src]
Performs the ^
operation.
impl<T, U: Clone, N: ArrayLength<T>> BitXor<NumericConstant<U>> for NumericArray<T, N> where
T: BitXor<U>,
N: ArrayLength<<T as BitXor<U>>::Output>,
[src]
T: BitXor<U>,
N: ArrayLength<<T as BitXor<U>>::Output>,
type Output = NumericArray<<T as BitXor<U>>::Output, N>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the ^
operation.
impl<'a, T: Clone, U: Clone, N: ArrayLength<T>> BitXor<NumericConstant<U>> for &'a NumericArray<T, N> where
T: BitXor<U>,
N: ArrayLength<<T as BitXor<U>>::Output>,
[src]
T: BitXor<U>,
N: ArrayLength<<T as BitXor<U>>::Output>,
type Output = NumericArray<<T as BitXor<U>>::Output, N>
The resulting type after applying the ^
operator.
fn bitxor(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the ^
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> Shr<NumericArray<U, N>> for NumericArray<T, N> where
T: Shr<U>,
N: ArrayLength<<T as Shr<U>>::Output>,
[src]
T: Shr<U>,
N: ArrayLength<<T as Shr<U>>::Output>,
type Output = NumericArray<<T as Shr<U>>::Output, N>
The resulting type after applying the >>
operator.
fn shr(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the >>
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> Shr<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: Shr<U>,
N: ArrayLength<<T as Shr<U>>::Output>,
[src]
T: Shr<U>,
N: ArrayLength<<T as Shr<U>>::Output>,
type Output = NumericArray<<T as Shr<U>>::Output, N>
The resulting type after applying the >>
operator.
fn shr(self, rhs: &'a NumericArray<U, N>) -> Self::Output
[src]
Performs the >>
operation.
impl<'a, T: Clone, U, N: ArrayLength<T> + ArrayLength<U>> Shr<NumericArray<U, N>> for &'a NumericArray<T, N> where
T: Shr<U>,
N: ArrayLength<<T as Shr<U>>::Output>,
[src]
T: Shr<U>,
N: ArrayLength<<T as Shr<U>>::Output>,
type Output = NumericArray<<T as Shr<U>>::Output, N>
The resulting type after applying the >>
operator.
fn shr(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the >>
operation.
impl<'a, 'b, T: Clone, U: Clone, N: ArrayLength<T> + ArrayLength<U>> Shr<&'b NumericArray<U, N>> for &'a NumericArray<T, N> where
T: Shr<U>,
N: ArrayLength<<T as Shr<U>>::Output>,
[src]
T: Shr<U>,
N: ArrayLength<<T as Shr<U>>::Output>,
type Output = NumericArray<<T as Shr<U>>::Output, N>
The resulting type after applying the >>
operator.
fn shr(self, rhs: &'b NumericArray<U, N>) -> Self::Output
[src]
Performs the >>
operation.
impl<T, U: Clone, N: ArrayLength<T>> Shr<NumericConstant<U>> for NumericArray<T, N> where
T: Shr<U>,
N: ArrayLength<<T as Shr<U>>::Output>,
[src]
T: Shr<U>,
N: ArrayLength<<T as Shr<U>>::Output>,
type Output = NumericArray<<T as Shr<U>>::Output, N>
The resulting type after applying the >>
operator.
fn shr(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the >>
operation.
impl<'a, T: Clone, U: Clone, N: ArrayLength<T>> Shr<NumericConstant<U>> for &'a NumericArray<T, N> where
T: Shr<U>,
N: ArrayLength<<T as Shr<U>>::Output>,
[src]
T: Shr<U>,
N: ArrayLength<<T as Shr<U>>::Output>,
type Output = NumericArray<<T as Shr<U>>::Output, N>
The resulting type after applying the >>
operator.
fn shr(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the >>
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> Shl<NumericArray<U, N>> for NumericArray<T, N> where
T: Shl<U>,
N: ArrayLength<<T as Shl<U>>::Output>,
[src]
T: Shl<U>,
N: ArrayLength<<T as Shl<U>>::Output>,
type Output = NumericArray<<T as Shl<U>>::Output, N>
The resulting type after applying the <<
operator.
fn shl(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the <<
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> Shl<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: Shl<U>,
N: ArrayLength<<T as Shl<U>>::Output>,
[src]
T: Shl<U>,
N: ArrayLength<<T as Shl<U>>::Output>,
type Output = NumericArray<<T as Shl<U>>::Output, N>
The resulting type after applying the <<
operator.
fn shl(self, rhs: &'a NumericArray<U, N>) -> Self::Output
[src]
Performs the <<
operation.
impl<'a, T: Clone, U, N: ArrayLength<T> + ArrayLength<U>> Shl<NumericArray<U, N>> for &'a NumericArray<T, N> where
T: Shl<U>,
N: ArrayLength<<T as Shl<U>>::Output>,
[src]
T: Shl<U>,
N: ArrayLength<<T as Shl<U>>::Output>,
type Output = NumericArray<<T as Shl<U>>::Output, N>
The resulting type after applying the <<
operator.
fn shl(self, rhs: NumericArray<U, N>) -> Self::Output
[src]
Performs the <<
operation.
impl<'a, 'b, T: Clone, U: Clone, N: ArrayLength<T> + ArrayLength<U>> Shl<&'b NumericArray<U, N>> for &'a NumericArray<T, N> where
T: Shl<U>,
N: ArrayLength<<T as Shl<U>>::Output>,
[src]
T: Shl<U>,
N: ArrayLength<<T as Shl<U>>::Output>,
type Output = NumericArray<<T as Shl<U>>::Output, N>
The resulting type after applying the <<
operator.
fn shl(self, rhs: &'b NumericArray<U, N>) -> Self::Output
[src]
Performs the <<
operation.
impl<T, U: Clone, N: ArrayLength<T>> Shl<NumericConstant<U>> for NumericArray<T, N> where
T: Shl<U>,
N: ArrayLength<<T as Shl<U>>::Output>,
[src]
T: Shl<U>,
N: ArrayLength<<T as Shl<U>>::Output>,
type Output = NumericArray<<T as Shl<U>>::Output, N>
The resulting type after applying the <<
operator.
fn shl(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the <<
operation.
impl<'a, T: Clone, U: Clone, N: ArrayLength<T>> Shl<NumericConstant<U>> for &'a NumericArray<T, N> where
T: Shl<U>,
N: ArrayLength<<T as Shl<U>>::Output>,
[src]
T: Shl<U>,
N: ArrayLength<<T as Shl<U>>::Output>,
type Output = NumericArray<<T as Shl<U>>::Output, N>
The resulting type after applying the <<
operator.
fn shl(self, rhs: NumericConstant<U>) -> Self::Output
[src]
Performs the <<
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> AddAssign<NumericArray<U, N>> for NumericArray<T, N> where
T: AddAssign<U>,
[src]
T: AddAssign<U>,
fn add_assign(&mut self, rhs: NumericArray<U, N>)
[src]
Performs the +=
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> AddAssign<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: AddAssign<U>,
[src]
T: AddAssign<U>,
fn add_assign(&mut self, rhs: &'a NumericArray<U, N>)
[src]
Performs the +=
operation.
impl<T, U: Clone, N: ArrayLength<T>> AddAssign<NumericConstant<U>> for NumericArray<T, N> where
T: AddAssign<U>,
[src]
T: AddAssign<U>,
fn add_assign(&mut self, rhs: NumericConstant<U>)
[src]
Performs the +=
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> SubAssign<NumericArray<U, N>> for NumericArray<T, N> where
T: SubAssign<U>,
[src]
T: SubAssign<U>,
fn sub_assign(&mut self, rhs: NumericArray<U, N>)
[src]
Performs the -=
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> SubAssign<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: SubAssign<U>,
[src]
T: SubAssign<U>,
fn sub_assign(&mut self, rhs: &'a NumericArray<U, N>)
[src]
Performs the -=
operation.
impl<T, U: Clone, N: ArrayLength<T>> SubAssign<NumericConstant<U>> for NumericArray<T, N> where
T: SubAssign<U>,
[src]
T: SubAssign<U>,
fn sub_assign(&mut self, rhs: NumericConstant<U>)
[src]
Performs the -=
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> MulAssign<NumericArray<U, N>> for NumericArray<T, N> where
T: MulAssign<U>,
[src]
T: MulAssign<U>,
fn mul_assign(&mut self, rhs: NumericArray<U, N>)
[src]
Performs the *=
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> MulAssign<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: MulAssign<U>,
[src]
T: MulAssign<U>,
fn mul_assign(&mut self, rhs: &'a NumericArray<U, N>)
[src]
Performs the *=
operation.
impl<T, U: Clone, N: ArrayLength<T>> MulAssign<NumericConstant<U>> for NumericArray<T, N> where
T: MulAssign<U>,
[src]
T: MulAssign<U>,
fn mul_assign(&mut self, rhs: NumericConstant<U>)
[src]
Performs the *=
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> DivAssign<NumericArray<U, N>> for NumericArray<T, N> where
T: DivAssign<U>,
[src]
T: DivAssign<U>,
fn div_assign(&mut self, rhs: NumericArray<U, N>)
[src]
Performs the /=
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> DivAssign<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: DivAssign<U>,
[src]
T: DivAssign<U>,
fn div_assign(&mut self, rhs: &'a NumericArray<U, N>)
[src]
Performs the /=
operation.
impl<T, U: Clone, N: ArrayLength<T>> DivAssign<NumericConstant<U>> for NumericArray<T, N> where
T: DivAssign<U>,
[src]
T: DivAssign<U>,
fn div_assign(&mut self, rhs: NumericConstant<U>)
[src]
Performs the /=
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> RemAssign<NumericArray<U, N>> for NumericArray<T, N> where
T: RemAssign<U>,
[src]
T: RemAssign<U>,
fn rem_assign(&mut self, rhs: NumericArray<U, N>)
[src]
Performs the %=
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> RemAssign<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: RemAssign<U>,
[src]
T: RemAssign<U>,
fn rem_assign(&mut self, rhs: &'a NumericArray<U, N>)
[src]
Performs the %=
operation.
impl<T, U: Clone, N: ArrayLength<T>> RemAssign<NumericConstant<U>> for NumericArray<T, N> where
T: RemAssign<U>,
[src]
T: RemAssign<U>,
fn rem_assign(&mut self, rhs: NumericConstant<U>)
[src]
Performs the %=
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> BitAndAssign<NumericArray<U, N>> for NumericArray<T, N> where
T: BitAndAssign<U>,
[src]
T: BitAndAssign<U>,
fn bitand_assign(&mut self, rhs: NumericArray<U, N>)
[src]
Performs the &=
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> BitAndAssign<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: BitAndAssign<U>,
[src]
T: BitAndAssign<U>,
fn bitand_assign(&mut self, rhs: &'a NumericArray<U, N>)
[src]
Performs the &=
operation.
impl<T, U: Clone, N: ArrayLength<T>> BitAndAssign<NumericConstant<U>> for NumericArray<T, N> where
T: BitAndAssign<U>,
[src]
T: BitAndAssign<U>,
fn bitand_assign(&mut self, rhs: NumericConstant<U>)
[src]
Performs the &=
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> BitOrAssign<NumericArray<U, N>> for NumericArray<T, N> where
T: BitOrAssign<U>,
[src]
T: BitOrAssign<U>,
fn bitor_assign(&mut self, rhs: NumericArray<U, N>)
[src]
Performs the |=
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> BitOrAssign<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: BitOrAssign<U>,
[src]
T: BitOrAssign<U>,
fn bitor_assign(&mut self, rhs: &'a NumericArray<U, N>)
[src]
Performs the |=
operation.
impl<T, U: Clone, N: ArrayLength<T>> BitOrAssign<NumericConstant<U>> for NumericArray<T, N> where
T: BitOrAssign<U>,
[src]
T: BitOrAssign<U>,
fn bitor_assign(&mut self, rhs: NumericConstant<U>)
[src]
Performs the |=
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> BitXorAssign<NumericArray<U, N>> for NumericArray<T, N> where
T: BitXorAssign<U>,
[src]
T: BitXorAssign<U>,
fn bitxor_assign(&mut self, rhs: NumericArray<U, N>)
[src]
Performs the ^=
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> BitXorAssign<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: BitXorAssign<U>,
[src]
T: BitXorAssign<U>,
fn bitxor_assign(&mut self, rhs: &'a NumericArray<U, N>)
[src]
Performs the ^=
operation.
impl<T, U: Clone, N: ArrayLength<T>> BitXorAssign<NumericConstant<U>> for NumericArray<T, N> where
T: BitXorAssign<U>,
[src]
T: BitXorAssign<U>,
fn bitxor_assign(&mut self, rhs: NumericConstant<U>)
[src]
Performs the ^=
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> ShrAssign<NumericArray<U, N>> for NumericArray<T, N> where
T: ShrAssign<U>,
[src]
T: ShrAssign<U>,
fn shr_assign(&mut self, rhs: NumericArray<U, N>)
[src]
Performs the >>=
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> ShrAssign<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: ShrAssign<U>,
[src]
T: ShrAssign<U>,
fn shr_assign(&mut self, rhs: &'a NumericArray<U, N>)
[src]
Performs the >>=
operation.
impl<T, U: Clone, N: ArrayLength<T>> ShrAssign<NumericConstant<U>> for NumericArray<T, N> where
T: ShrAssign<U>,
[src]
T: ShrAssign<U>,
fn shr_assign(&mut self, rhs: NumericConstant<U>)
[src]
Performs the >>=
operation.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> ShlAssign<NumericArray<U, N>> for NumericArray<T, N> where
T: ShlAssign<U>,
[src]
T: ShlAssign<U>,
fn shl_assign(&mut self, rhs: NumericArray<U, N>)
[src]
Performs the <<=
operation.
impl<'a, T, U: Clone, N: ArrayLength<T> + ArrayLength<U>> ShlAssign<&'a NumericArray<U, N>> for NumericArray<T, N> where
T: ShlAssign<U>,
[src]
T: ShlAssign<U>,
fn shl_assign(&mut self, rhs: &'a NumericArray<U, N>)
[src]
Performs the <<=
operation.
impl<T, U: Clone, N: ArrayLength<T>> ShlAssign<NumericConstant<U>> for NumericArray<T, N> where
T: ShlAssign<U>,
[src]
T: ShlAssign<U>,
fn shl_assign(&mut self, rhs: NumericConstant<U>)
[src]
Performs the <<=
operation.
impl<T, N: ArrayLength<T>> WrappingAdd for NumericArray<T, N> where
T: WrappingAdd,
[src]
T: WrappingAdd,
fn wrapping_add(&self, rhs: &Self) -> Self
[src]
Wrapping (modular) addition. Computes self + other
, wrapping around at the boundary of the type. Read more
impl<T, N: ArrayLength<T>> WrappingSub for NumericArray<T, N> where
T: WrappingSub,
[src]
T: WrappingSub,
fn wrapping_sub(&self, rhs: &Self) -> Self
[src]
Wrapping (modular) subtraction. Computes self - other
, wrapping around at the boundary of the type. Read more
impl<T, N: ArrayLength<T>> WrappingMul for NumericArray<T, N> where
T: WrappingMul,
[src]
T: WrappingMul,
fn wrapping_mul(&self, rhs: &Self) -> Self
[src]
Wrapping (modular) multiplication. Computes self * other
, wrapping around at the boundary of the type. Read more
impl<T, N: ArrayLength<T>> CheckedAdd for NumericArray<T, N> where
T: CheckedAdd,
[src]
T: CheckedAdd,
fn checked_add(&self, rhs: &Self) -> Option<Self>
[src]
Adds two numbers, checking for overflow. If overflow happens, None
is returned. Read more
impl<T, N: ArrayLength<T>> CheckedSub for NumericArray<T, N> where
T: CheckedSub,
[src]
T: CheckedSub,
fn checked_sub(&self, rhs: &Self) -> Option<Self>
[src]
Subtracts two numbers, checking for underflow. If underflow happens, None
is returned. Read more
impl<T, N: ArrayLength<T>> CheckedMul for NumericArray<T, N> where
T: CheckedMul,
[src]
T: CheckedMul,
fn checked_mul(&self, rhs: &Self) -> Option<Self>
[src]
Multiplies two numbers, checking for underflow or overflow. If underflow or overflow happens, None
is returned. Read more
impl<T, N: ArrayLength<T>> CheckedDiv for NumericArray<T, N> where
T: CheckedDiv,
[src]
T: CheckedDiv,
fn checked_div(&self, rhs: &Self) -> Option<Self>
[src]
Divides two numbers, checking for underflow, overflow and division by zero. If any of that happens, None
is returned. Read more
impl<T, N: ArrayLength<T>> CheckedShl for NumericArray<T, N> where
T: CheckedShl,
Self: Shl<u32, Output = Self>,
[src]
T: CheckedShl,
Self: Shl<u32, Output = Self>,
fn checked_shl(&self, rhs: u32) -> Option<Self>
[src]
Shifts a number to the left, checking for overflow. If overflow happens, None
is returned. Read more
impl<T, N: ArrayLength<T>> CheckedShr for NumericArray<T, N> where
T: CheckedShr,
Self: Shr<u32, Output = Self>,
[src]
T: CheckedShr,
Self: Shr<u32, Output = Self>,
fn checked_shr(&self, rhs: u32) -> Option<Self>
[src]
Shifts a number to the left, checking for overflow. If overflow happens, None
is returned. Read more
impl<T, N: ArrayLength<T>> FloatConst for NumericArray<T, N> where
T: FloatConst,
[src]
T: FloatConst,
fn E() -> Self
[src]
Return Euler’s number.
fn FRAC_1_PI() -> Self
[src]
Return 1.0 / π
.
fn FRAC_1_SQRT_2() -> Self
[src]
Return 1.0 / sqrt(2.0)
.
fn FRAC_2_PI() -> Self
[src]
Return 2.0 / π
.
fn FRAC_2_SQRT_PI() -> Self
[src]
Return 2.0 / sqrt(π)
.
fn FRAC_PI_2() -> Self
[src]
Return π / 2.0
.
fn FRAC_PI_3() -> Self
[src]
Return π / 3.0
.
fn FRAC_PI_4() -> Self
[src]
Return π / 4.0
.
fn FRAC_PI_6() -> Self
[src]
Return π / 6.0
.
fn FRAC_PI_8() -> Self
[src]
Return π / 8.0
.
fn LN_10() -> Self
[src]
Return ln(10.0)
.
fn LN_2() -> Self
[src]
Return ln(2.0)
.
fn LOG10_E() -> Self
[src]
Return log10(e)
.
fn LOG2_E() -> Self
[src]
Return log2(e)
.
fn PI() -> Self
[src]
Return Archimedes’ constant.
fn SQRT_2() -> Self
[src]
Return sqrt(2.0)
.
impl<T, N: ArrayLength<T>> Zero for NumericArray<T, N> where
T: Zero,
[src]
T: Zero,
fn zero() -> Self
[src]
Returns the additive identity element of Self
, 0
. Read more
fn is_zero(&self) -> bool
[src]
Returns true
if self
is equal to the additive identity.
impl<T, N: ArrayLength<T>> One for NumericArray<T, N> where
T: One,
[src]
T: One,
fn one() -> Self
[src]
Returns the multiplicative identity element of Self
, 1
. Read more
fn is_one(&self) -> bool where
Self: PartialEq<Self>,
[src]
Self: PartialEq<Self>,
Returns true
if self
is equal to the multiplicative identity. Read more
impl<T, N: ArrayLength<T>> Saturating for NumericArray<T, N> where
T: Saturating,
[src]
T: Saturating,
fn saturating_add(self, rhs: Self) -> Self
[src]
Saturating addition operator. Returns a+b, saturating at the numeric bounds instead of overflowing. Read more
fn saturating_sub(self, rhs: Self) -> Self
[src]
Saturating subtraction operator. Returns a-b, saturating at the numeric bounds instead of overflowing. Read more
impl<T: Clone, N: ArrayLength<T>> Num for NumericArray<T, N> where
T: Num,
[src]
T: Num,
type FromStrRadixErr = <T as Num>::FromStrRadixErr
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>
[src]
Convert from a string and radix <= 36. Read more
impl<T: Clone, N: ArrayLength<T>> Signed for NumericArray<T, N> where
T: Signed,
[src]
T: Signed,
fn abs(&self) -> Self
[src]
Computes the absolute value. Read more
fn abs_sub(&self, rhs: &Self) -> Self
[src]
The positive difference of two numbers. Read more
fn signum(&self) -> Self
[src]
Returns the sign of the number. Read more
fn is_positive(&self) -> bool
[src]
Returns true if the number is positive and false if the number is zero or negative.
fn is_negative(&self) -> bool
[src]
Returns true if the number is negative and false if the number is zero or positive.
impl<T: Clone, N: ArrayLength<T>> Unsigned for NumericArray<T, N> where
T: Unsigned,
[src]
T: Unsigned,
impl<T, N: ArrayLength<T>> Bounded for NumericArray<T, N> where
T: Bounded,
[src]
T: Bounded,
fn min_value() -> Self
[src]
returns the smallest finite number this type can represent
fn max_value() -> Self
[src]
returns the largest finite number this type can represent
impl<T, N: ArrayLength<T>> ToPrimitive for NumericArray<T, N> where
T: ToPrimitive,
[src]
T: ToPrimitive,
fn to_i64(&self) -> Option<i64>
[src]
Converts the value of self
to an i64
.
fn to_u64(&self) -> Option<u64>
[src]
Converts the value of self
to an u64
.
fn to_isize(&self) -> Option<isize>
[src]
Converts the value of self
to an isize
.
fn to_i8(&self) -> Option<i8>
[src]
Converts the value of self
to an i8
.
fn to_i16(&self) -> Option<i16>
[src]
Converts the value of self
to an i16
.
fn to_i32(&self) -> Option<i32>
[src]
Converts the value of self
to an i32
.
fn to_usize(&self) -> Option<usize>
[src]
Converts the value of self
to a usize
.
fn to_u8(&self) -> Option<u8>
[src]
Converts the value of self
to an u8
.
fn to_u16(&self) -> Option<u16>
[src]
Converts the value of self
to an u16
.
fn to_u32(&self) -> Option<u32>
[src]
Converts the value of self
to an u32
.
fn to_f32(&self) -> Option<f32>
[src]
Converts the value of self
to an f32
.
fn to_f64(&self) -> Option<f64>
[src]
Converts the value of self
to an f64
.
impl<T, N: ArrayLength<T>> NumCast for NumericArray<T, N> where
T: NumCast + Clone,
[src]
T: NumCast + Clone,
fn from<P: ToPrimitive>(n: P) -> Option<Self>
[src]
Creates a number from another value that can be converted into a primitive via the ToPrimitive
trait. Read more
impl<T, N: ArrayLength<T>> Float for NumericArray<T, N> where
T: Float + Copy,
Self: Copy,
[src]
T: Float + Copy,
Self: Copy,
fn nan() -> Self
[src]
Returns the NaN
value. Read more
fn infinity() -> Self
[src]
Returns the infinite value. Read more
fn neg_infinity() -> Self
[src]
Returns the negative infinite value. Read more
fn neg_zero() -> Self
[src]
Returns -0.0
. Read more
fn min_value() -> Self
[src]
Returns the smallest finite value that this type can represent. Read more
fn min_positive_value() -> Self
[src]
Returns the smallest positive, normalized value that this type can represent. Read more
fn max_value() -> Self
[src]
Returns the largest finite value that this type can represent. Read more
fn is_nan(self) -> bool
[src]
Returns true
if this value is NaN
and false otherwise. Read more
fn is_infinite(self) -> bool
[src]
Returns true
if this value is positive infinity or negative infinity and false otherwise. Read more
fn is_finite(self) -> bool
[src]
Returns true
if this number is neither infinite nor NaN
. Read more
fn is_normal(self) -> bool
[src]
Returns true
if the number is neither zero, infinite, [subnormal][subnormal], or NaN
. Read more
fn classify(self) -> FpCategory
[src]
Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead. Read more
fn floor(self) -> Self
[src]
Returns the largest integer less than or equal to a number. Read more
fn ceil(self) -> Self
[src]
Returns the smallest integer greater than or equal to a number. Read more
fn round(self) -> Self
[src]
Returns the nearest integer to a number. Round half-way cases away from 0.0
. Read more
fn trunc(self) -> Self
[src]
Return the integer part of a number. Read more
fn fract(self) -> Self
[src]
Returns the fractional part of a number. Read more
fn abs(self) -> Self
[src]
Computes the absolute value of self
. Returns Float::nan()
if the number is Float::nan()
. Read more
fn signum(self) -> Self
[src]
Returns a number that represents the sign of self
. Read more
fn is_sign_positive(self) -> bool
[src]
Returns true
if self
is positive, including +0.0
, Float::infinity()
, and since Rust 1.20 also Float::nan()
. Read more
fn is_sign_negative(self) -> bool
[src]
Returns true
if self
is negative, including -0.0
, Float::neg_infinity()
, and since Rust 1.20 also -Float::nan()
. Read more
fn mul_add(self, a: Self, b: Self) -> Self
[src]
Fused multiply-add. Computes (self * a) + b
with only one rounding error. This produces a more accurate result with better performance than a separate multiplication operation followed by an add. Read more
fn recip(self) -> Self
[src]
Take the reciprocal (inverse) of a number, 1/x
. Read more
fn powi(self, n: i32) -> Self
[src]
Raise a number to an integer power. Read more
fn powf(self, n: Self) -> Self
[src]
Raise a number to a floating point power. Read more
fn sqrt(self) -> Self
[src]
Take the square root of a number. Read more
fn exp(self) -> Self
[src]
Returns e^(self)
, (the exponential function). Read more
fn exp2(self) -> Self
[src]
Returns 2^(self)
. Read more
fn ln(self) -> Self
[src]
Returns the natural logarithm of the number. Read more
fn log(self, base: Self) -> Self
[src]
Returns the logarithm of the number with respect to an arbitrary base. Read more
fn log2(self) -> Self
[src]
Returns the base 2 logarithm of the number. Read more
fn log10(self) -> Self
[src]
Returns the base 10 logarithm of the number. Read more
fn max(self, other: Self) -> Self
[src]
Returns the maximum of the two numbers. Read more
fn min(self, other: Self) -> Self
[src]
Returns the minimum of the two numbers. Read more
fn abs_sub(self, other: Self) -> Self
[src]
The positive difference of two numbers. Read more
fn cbrt(self) -> Self
[src]
Take the cubic root of a number. Read more
fn hypot(self, other: Self) -> Self
[src]
Calculate the length of the hypotenuse of a right-angle triangle given legs of length x
and y
. Read more
fn sin(self) -> Self
[src]
Computes the sine of a number (in radians). Read more
fn cos(self) -> Self
[src]
Computes the cosine of a number (in radians). Read more
fn tan(self) -> Self
[src]
Computes the tangent of a number (in radians). Read more
fn asin(self) -> Self
[src]
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1]. Read more
fn acos(self) -> Self
[src]
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1]. Read more
fn atan(self) -> Self
[src]
Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2]; Read more
fn atan2(self, other: Self) -> Self
[src]
Computes the four quadrant arctangent of self
(y
) and other
(x
). Read more
fn sin_cos(self) -> (Self, Self)
[src]
Simultaneously computes the sine and cosine of the number, x
. Returns (sin(x), cos(x))
. Read more
fn exp_m1(self) -> Self
[src]
Returns e^(self) - 1
in a way that is accurate even if the number is close to zero. Read more
fn ln_1p(self) -> Self
[src]
Returns ln(1+n)
(natural logarithm) more accurately than if the operations were performed separately. Read more
fn sinh(self) -> Self
[src]
Hyperbolic sine function. Read more
fn cosh(self) -> Self
[src]
Hyperbolic cosine function. Read more
fn tanh(self) -> Self
[src]
Hyperbolic tangent function. Read more
fn asinh(self) -> Self
[src]
Inverse hyperbolic sine function. Read more
fn acosh(self) -> Self
[src]
Inverse hyperbolic cosine function. Read more
fn atanh(self) -> Self
[src]
Inverse hyperbolic tangent function. Read more
fn integer_decode(self) -> (u64, i16, i8)
[src]
Returns the mantissa, base 2 exponent, and sign as integers, respectively. The original number can be recovered by sign * mantissa * 2 ^ exponent
. Read more
fn epsilon() -> Self
[src]
Returns epsilon, a small positive value. Read more
fn to_degrees(self) -> Self
[src]
Converts radians to degrees. Read more
fn to_radians(self) -> Self
[src]
Converts degrees to radians. Read more
impl<T, N: ArrayLength<T>> GenericSequence<T> for NumericArray<T, N>
[src]
type Length = N
GenericArray
associated length
type Sequence = Self
Concrete sequence type used in conjuction with reference implementations of GenericSequence
fn generate<F>(f: F) -> Self where
F: FnMut(usize) -> T,
[src]
F: FnMut(usize) -> T,
Initializes a new sequence instance using the given function. Read more
impl<T: Debug, N: ArrayLength<T>> Debug for NumericArray<T, N>
[src]
fn fmt(&self, f: &mut Formatter) -> FmtResult
[src]
Formats the value using the given formatter. Read more
impl<T, N: ArrayLength<T>> From<GenericArray<T, N>> for NumericArray<T, N>
[src]
fn from(arr: GenericArray<T, N>) -> NumericArray<T, N>
[src]
Performs the conversion.
impl<T: Clone, N: ArrayLength<T>> Clone for NumericArray<T, N>
[src]
fn clone(&self) -> NumericArray<T, N>
[src]
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
1.0.0[src]
Performs copy-assignment from source
. Read more
impl<T: Copy, N: ArrayLength<T>> Copy for NumericArray<T, N> where
N::ArrayType: Copy,
[src]
N::ArrayType: Copy,
impl<T, N: ArrayLength<T>> Deref for NumericArray<T, N>
[src]
type Target = [T]
The resulting type after dereferencing.
fn deref(&self) -> &Self::Target
[src]
Dereferences the value.
impl<T, N: ArrayLength<T>> DerefMut for NumericArray<T, N>
[src]
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> PartialEq<NumericArray<U, N>> for NumericArray<T, N> where
T: PartialEq<U>,
[src]
T: PartialEq<U>,
fn eq(&self, rhs: &NumericArray<U, N>) -> bool
[src]
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &Rhs) -> bool
1.0.0[src]
This method tests for !=
.
impl<T, U, N: ArrayLength<T> + ArrayLength<U>> PartialEq<GenericArray<U, N>> for NumericArray<T, N> where
T: PartialEq<U>,
[src]
T: PartialEq<U>,
fn eq(&self, rhs: &GenericArray<U, N>) -> bool
[src]
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, rhs: &GenericArray<U, N>) -> bool
[src]
This method tests for !=
.
impl<T, N: ArrayLength<T>> Eq for NumericArray<T, N> where
T: Eq,
[src]
T: Eq,
impl<T, N: ArrayLength<T>> PartialOrd<Self> for NumericArray<T, N> where
T: PartialOrd,
[src]
T: PartialOrd,
fn partial_cmp(&self, rhs: &Self) -> Option<Ordering>
[src]
This method returns an ordering between self
and other
values if one exists. Read more
fn lt(&self, rhs: &Self) -> bool
[src]
This method tests less than (for self
and other
) and is used by the <
operator. Read more
fn le(&self, rhs: &Self) -> bool
[src]
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
fn gt(&self, rhs: &Self) -> bool
[src]
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
fn ge(&self, rhs: &Self) -> bool
[src]
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
impl<T, N: ArrayLength<T>> PartialOrd<GenericArray<T, N>> for NumericArray<T, N> where
T: PartialOrd,
[src]
T: PartialOrd,
fn partial_cmp(&self, rhs: &GenericArray<T, N>) -> Option<Ordering>
[src]
This method returns an ordering between self
and other
values if one exists. Read more
fn lt(&self, rhs: &GenericArray<T, N>) -> bool
[src]
This method tests less than (for self
and other
) and is used by the <
operator. Read more
fn le(&self, rhs: &GenericArray<T, N>) -> bool
[src]
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
fn gt(&self, rhs: &GenericArray<T, N>) -> bool
[src]
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
fn ge(&self, rhs: &GenericArray<T, N>) -> bool
[src]
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
impl<T, N: ArrayLength<T>> Ord for NumericArray<T, N> where
T: Ord,
[src]
T: Ord,
fn cmp(&self, rhs: &Self) -> Ordering
[src]
This method returns an Ordering
between self
and other
. Read more
fn max(self, other: Self) -> Self
1.21.0[src]
Compares and returns the maximum of two values. Read more
fn min(self, other: Self) -> Self
1.21.0[src]
Compares and returns the minimum of two values. Read more
impl<T, N: ArrayLength<T>> AsRef<[T]> for NumericArray<T, N>
[src]
impl<T, N: ArrayLength<T>> Borrow<[T]> for NumericArray<T, N>
[src]
impl<T, N: ArrayLength<T>> AsMut<[T]> for NumericArray<T, N>
[src]
impl<T, N: ArrayLength<T>> BorrowMut<[T]> for NumericArray<T, N>
[src]
fn borrow_mut(&mut self) -> &mut [T]
[src]
Mutably borrows from an owned value. Read more
impl<T, N: ArrayLength<T>> Index<usize> for NumericArray<T, N>
[src]
type Output = T
The returned type after indexing.
fn index(&self, index: usize) -> &T
[src]
Performs the indexing (container[index]
) operation.
impl<T, N: ArrayLength<T>> IndexMut<usize> for NumericArray<T, N>
[src]
fn index_mut(&mut self, index: usize) -> &mut T
[src]
Performs the mutable indexing (container[index]
) operation.
impl<T, N: ArrayLength<T>> Index<Range<usize>> for NumericArray<T, N>
[src]
type Output = [T]
The returned type after indexing.
fn index(&self, index: Range<usize>) -> &[T]
[src]
Performs the indexing (container[index]
) operation.
impl<T, N: ArrayLength<T>> Index<RangeTo<usize>> for NumericArray<T, N>
[src]
type Output = [T]
The returned type after indexing.
fn index(&self, index: RangeTo<usize>) -> &[T]
[src]
Performs the indexing (container[index]
) operation.
impl<T, N: ArrayLength<T>> Index<RangeFrom<usize>> for NumericArray<T, N>
[src]
type Output = [T]
The returned type after indexing.
fn index(&self, index: RangeFrom<usize>) -> &[T]
[src]
Performs the indexing (container[index]
) operation.
impl<T, N: ArrayLength<T>> Index<RangeFull> for NumericArray<T, N>
[src]
type Output = [T]
The returned type after indexing.
fn index(&self, _index: RangeFull) -> &[T]
[src]
Performs the indexing (container[index]
) operation.
impl<'a, T, N: ArrayLength<T>> IntoIterator for &'a NumericArray<T, N>
[src]
type Item = &'a T
The type of the elements being iterated over.
type IntoIter = Iter<'a, T>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Self::IntoIter
[src]
Creates an iterator from a value. Read more
impl<'a, T, N: ArrayLength<T>> IntoIterator for &'a mut NumericArray<T, N>
[src]
type Item = &'a mut T
The type of the elements being iterated over.
type IntoIter = IterMut<'a, T>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Self::IntoIter
[src]
Creates an iterator from a value. Read more
impl<T, N: ArrayLength<T>> IntoIterator for NumericArray<T, N>
[src]
type Item = T
The type of the elements being iterated over.
type IntoIter = GenericArrayIter<T, N>
Which kind of iterator are we turning this into?
fn into_iter(self) -> Self::IntoIter
[src]
Creates an iterator from a value. Read more
impl<T, N: ArrayLength<T>> FromIterator<T> for NumericArray<T, N>
[src]
fn from_iter<I>(iter: I) -> Self where
I: IntoIterator<Item = T>,
[src]
I: IntoIterator<Item = T>,
Creates a value from an iterator. Read more
impl<T, N: ArrayLength<T>> Default for NumericArray<T, N> where
T: Default,
[src]
T: Default,
Auto Trait Implementations
impl<T, N> Send for NumericArray<T, N> where
T: Send,
T: Send,
impl<T, N> Sync for NumericArray<T, N> where
T: Sync,
T: Sync,