ImplicitDerivative

Struct ImplicitDerivative 

Source
pub struct ImplicitDerivative<G: ImplicitFunction<F>, D: DualNum<F> + Copy, F: DualNumFloat, V> { /* private fields */ }
Expand description

Helper struct that stores parameters in dual and real form and provides functions for evaluating real residuals (for external solvers) and implicit derivatives for arbitrary dual numbers.

Implementations§

Source§

impl<G: ImplicitFunction<F>, D: DualNum<F> + Copy, F: DualNum<F> + DualNumFloat> ImplicitDerivative<G, D, F, G::Variable<f64>>
where G::Parameters<D>: DualStruct<D, F, Real = G::Parameters<F>>,

Source

pub fn new(_: G, parameters: G::Parameters<D>) -> Self

Source

pub fn residual(&self, x: G::Variable<F>) -> G::Variable<F>

Evaluate the (real) residual for a scalar function.

Source§

impl<G: ImplicitFunction<F>, D: DualNum<F> + Copy, F: DualNum<F> + DualNumFloat> ImplicitDerivative<G, D, F, F>
where G::Parameters<D>: DualStruct<D, F, Real = G::Parameters<F>>,

Source

pub fn implicit_derivative<A: DualStruct<Dual<D, F>, F, Inner = G::Parameters<D>>>( &self, x: F, ) -> D
where G: ImplicitFunction<F, Variable<Dual<D, F>> = Dual<D, F>, Parameters<Dual<D, F>> = A>,

Evaluate the implicit derivative for a scalar function.

Source§

impl<G: ImplicitFunction<F>, D: DualNum<F> + Copy, F: DualNum<F> + DualNumFloat> ImplicitDerivative<G, D, F, [F; 2]>
where G::Parameters<D>: DualStruct<D, F, Real = G::Parameters<F>>,

Source

pub fn implicit_derivative<A: DualStruct<DualVec<D, F, U2>, F, Inner = G::Parameters<D>>>( &self, x: F, y: F, ) -> [D; 2]
where G: ImplicitFunction<F, Variable<DualVec<D, F, U2>> = [DualVec<D, F, U2>; 2], Parameters<DualVec<D, F, U2>> = A>,

Evaluate the implicit derivative for a bivariate function.

Source§

impl<G: ImplicitFunction<F>, D: DualNum<F> + Copy, F: DualNum<F> + DualNumFloat, const N: usize> ImplicitDerivative<G, D, F, SVector<F, N>>
where G::Parameters<D>: DualStruct<D, F, Real = G::Parameters<F>>,

Source

pub fn implicit_derivative<A: DualStruct<DualSVec<D, F, N>, F, Inner = G::Parameters<D>>>( &self, x: SVector<F, N>, ) -> SVector<D, N>
where G: ImplicitFunction<F, Variable<DualSVec<D, F, N>> = SVector<DualSVec<D, F, N>, N>, Parameters<DualSVec<D, F, N>> = A>,

Evaluate the implicit derivative for a multivariate function.

Auto Trait Implementations§

§

impl<G, D, F, V> Freeze for ImplicitDerivative<G, D, F, V>
where <G as ImplicitFunction<F>>::Parameters<F>: Freeze, <G as ImplicitFunction<F>>::Parameters<D>: Freeze,

§

impl<G, D, F, V> RefUnwindSafe for ImplicitDerivative<G, D, F, V>

§

impl<G, D, F, V> Send for ImplicitDerivative<G, D, F, V>
where <G as ImplicitFunction<F>>::Parameters<F>: Send, <G as ImplicitFunction<F>>::Parameters<D>: Send, V: Send,

§

impl<G, D, F, V> Sync for ImplicitDerivative<G, D, F, V>
where <G as ImplicitFunction<F>>::Parameters<F>: Sync, <G as ImplicitFunction<F>>::Parameters<D>: Sync, V: Sync,

§

impl<G, D, F, V> Unpin for ImplicitDerivative<G, D, F, V>
where <G as ImplicitFunction<F>>::Parameters<F>: Unpin, <G as ImplicitFunction<F>>::Parameters<D>: Unpin, V: Unpin,

§

impl<G, D, F, V> UnwindSafe for ImplicitDerivative<G, D, F, V>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.