pub struct ImplicitDerivative<G: ImplicitFunction<F>, D: DualNum<F> + Copy, F: DualNumFloat, V> { /* private fields */ }
Expand description
Helper struct that stores parameters in dual and real form and provides functions for evaluating real residuals (for external solvers) and implicit derivatives for arbitrary dual numbers.
Implementations§
Source§impl<G: ImplicitFunction<F>, D: DualNum<F> + Copy, F: DualNum<F> + DualNumFloat> ImplicitDerivative<G, D, F, G::Variable<f64>>
impl<G: ImplicitFunction<F>, D: DualNum<F> + Copy, F: DualNum<F> + DualNumFloat> ImplicitDerivative<G, D, F, G::Variable<f64>>
Source§impl<G: ImplicitFunction<F>, D: DualNum<F> + Copy, F: DualNum<F> + DualNumFloat> ImplicitDerivative<G, D, F, F>
impl<G: ImplicitFunction<F>, D: DualNum<F> + Copy, F: DualNum<F> + DualNumFloat> ImplicitDerivative<G, D, F, F>
Sourcepub fn implicit_derivative<A: DualStruct<Dual<D, F>, F, Inner = G::Parameters<D>>>(
&self,
x: F,
) -> D
pub fn implicit_derivative<A: DualStruct<Dual<D, F>, F, Inner = G::Parameters<D>>>( &self, x: F, ) -> D
Evaluate the implicit derivative for a scalar function.
Source§impl<G: ImplicitFunction<F>, D: DualNum<F> + Copy, F: DualNum<F> + DualNumFloat> ImplicitDerivative<G, D, F, [F; 2]>
impl<G: ImplicitFunction<F>, D: DualNum<F> + Copy, F: DualNum<F> + DualNumFloat> ImplicitDerivative<G, D, F, [F; 2]>
Sourcepub fn implicit_derivative<A: DualStruct<DualVec<D, F, U2>, F, Inner = G::Parameters<D>>>(
&self,
x: F,
y: F,
) -> [D; 2]
pub fn implicit_derivative<A: DualStruct<DualVec<D, F, U2>, F, Inner = G::Parameters<D>>>( &self, x: F, y: F, ) -> [D; 2]
Evaluate the implicit derivative for a bivariate function.
Source§impl<G: ImplicitFunction<F>, D: DualNum<F> + Copy, F: DualNum<F> + DualNumFloat, const N: usize> ImplicitDerivative<G, D, F, SVector<F, N>>
impl<G: ImplicitFunction<F>, D: DualNum<F> + Copy, F: DualNum<F> + DualNumFloat, const N: usize> ImplicitDerivative<G, D, F, SVector<F, N>>
Sourcepub fn implicit_derivative<A: DualStruct<DualSVec<D, F, N>, F, Inner = G::Parameters<D>>>(
&self,
x: SVector<F, N>,
) -> SVector<D, N>where
G: ImplicitFunction<F, Variable<DualSVec<D, F, N>> = SVector<DualSVec<D, F, N>, N>, Parameters<DualSVec<D, F, N>> = A>,
pub fn implicit_derivative<A: DualStruct<DualSVec<D, F, N>, F, Inner = G::Parameters<D>>>(
&self,
x: SVector<F, N>,
) -> SVector<D, N>where
G: ImplicitFunction<F, Variable<DualSVec<D, F, N>> = SVector<DualSVec<D, F, N>, N>, Parameters<DualSVec<D, F, N>> = A>,
Evaluate the implicit derivative for a multivariate function.
Auto Trait Implementations§
impl<G, D, F, V> Freeze for ImplicitDerivative<G, D, F, V>where
<G as ImplicitFunction<F>>::Parameters<F>: Freeze,
<G as ImplicitFunction<F>>::Parameters<D>: Freeze,
impl<G, D, F, V> RefUnwindSafe for ImplicitDerivative<G, D, F, V>where
<G as ImplicitFunction<F>>::Parameters<F>: RefUnwindSafe,
<G as ImplicitFunction<F>>::Parameters<D>: RefUnwindSafe,
V: RefUnwindSafe,
impl<G, D, F, V> Send for ImplicitDerivative<G, D, F, V>where
<G as ImplicitFunction<F>>::Parameters<F>: Send,
<G as ImplicitFunction<F>>::Parameters<D>: Send,
V: Send,
impl<G, D, F, V> Sync for ImplicitDerivative<G, D, F, V>where
<G as ImplicitFunction<F>>::Parameters<F>: Sync,
<G as ImplicitFunction<F>>::Parameters<D>: Sync,
V: Sync,
impl<G, D, F, V> Unpin for ImplicitDerivative<G, D, F, V>where
<G as ImplicitFunction<F>>::Parameters<F>: Unpin,
<G as ImplicitFunction<F>>::Parameters<D>: Unpin,
V: Unpin,
impl<G, D, F, V> UnwindSafe for ImplicitDerivative<G, D, F, V>where
<G as ImplicitFunction<F>>::Parameters<F>: UnwindSafe,
<G as ImplicitFunction<F>>::Parameters<D>: UnwindSafe,
V: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.