Skip to main content

Graph

Struct Graph 

Source
pub struct Graph { /* private fields */ }
Expand description

The static topology of a flow-based network.

A Graph defines the structure of a network: which nodes exist, how they’re connected, and what conditions govern packet flow. The graph is immutable after creation.

§Example

use netrun_sim::graph::{Graph, Node, Edge, PortRef, PortType, Port, PortSlotSpec};
use indexmap::IndexMap;
use std::collections::HashMap;

// Create a simple A -> B graph
let node_a = Node {
    name: "A".to_string(),
    in_ports: HashMap::new(),
    out_ports: [("out".to_string(), Port { slots_spec: PortSlotSpec::Infinite })].into(),
    in_salvo_conditions: IndexMap::new(),
    out_salvo_conditions: IndexMap::new(),
};
let node_b = Node {
    name: "B".to_string(),
    in_ports: [("in".to_string(), Port { slots_spec: PortSlotSpec::Infinite })].into(),
    out_ports: HashMap::new(),
    in_salvo_conditions: IndexMap::new(),
    out_salvo_conditions: IndexMap::new(),
};

let edge = Edge {
    source: PortRef { node_name: "A".to_string(), port_type: PortType::Output, port_name: "out".to_string() },
    target: PortRef { node_name: "B".to_string(), port_type: PortType::Input, port_name: "in".to_string() },
};

let graph = Graph::new(vec![node_a, node_b], vec![edge]);
assert!(graph.validate().is_empty());

Implementations§

Source§

impl Graph

Source

pub fn new(nodes: Vec<Node>, edges: Vec<Edge>) -> Self

Creates a new Graph from a list of nodes and edges.

Builds internal indexes for efficient edge lookups by source (tail) and target (head) ports.

Examples found in repository?
examples/linear_flow.rs (line 134)
122fn create_linear_graph() -> Graph {
123    let nodes = vec![
124        create_node("A", vec![], vec!["out"]),
125        create_node("B", vec!["in"], vec!["out"]),
126        create_node("C", vec!["in"], vec![]),
127    ];
128
129    let edges = vec![
130        create_edge("A", "out", "B", "in"),
131        create_edge("B", "out", "C", "in"),
132    ];
133
134    let graph = Graph::new(nodes, edges);
135    assert!(graph.validate().is_empty(), "Graph validation failed");
136    graph
137}
More examples
Hide additional examples
examples/diamond_flow.rs (line 204)
122fn create_diamond_graph() -> Graph {
123    // Node A: source with two outputs
124    let node_a = Node {
125        name: "A".to_string(),
126        in_ports: HashMap::new(),
127        out_ports: [
128            (
129                "out1".to_string(),
130                Port {
131                    slots_spec: PortSlotSpec::Infinite,
132                },
133            ),
134            (
135                "out2".to_string(),
136                Port {
137                    slots_spec: PortSlotSpec::Infinite,
138                },
139            ),
140        ]
141        .into(),
142        in_salvo_conditions: IndexMap::new(),
143        out_salvo_conditions: IndexMap::new(),
144    };
145
146    // Node B: one input, one output
147    let node_b = create_simple_node("B");
148
149    // Node C: one input, one output
150    let node_c = create_simple_node("C");
151
152    // Node D: TWO inputs (requires both), no outputs
153    let node_d = Node {
154        name: "D".to_string(),
155        in_ports: [
156            (
157                "in1".to_string(),
158                Port {
159                    slots_spec: PortSlotSpec::Infinite,
160                },
161            ),
162            (
163                "in2".to_string(),
164                Port {
165                    slots_spec: PortSlotSpec::Infinite,
166                },
167            ),
168        ]
169        .into(),
170        out_ports: HashMap::new(),
171        in_salvo_conditions: IndexMap::from([(
172            "default".to_string(),
173            SalvoCondition {
174                max_salvos: MaxSalvos::Finite(1),
175                ports: [
176                    ("in1".to_string(), PacketCount::All),
177                    ("in2".to_string(), PacketCount::All),
178                ]
179                .into_iter()
180                .collect(),
181                // Require BOTH inputs to be non-empty
182                term: SalvoConditionTerm::And(vec![
183                    SalvoConditionTerm::Port {
184                        port_name: "in1".to_string(),
185                        state: PortState::NonEmpty,
186                    },
187                    SalvoConditionTerm::Port {
188                        port_name: "in2".to_string(),
189                        state: PortState::NonEmpty,
190                    },
191                ]),
192            },
193        )]),
194        out_salvo_conditions: IndexMap::new(),
195    };
196
197    let edges = vec![
198        create_edge("A", "out1", "B", "in"),
199        create_edge("A", "out2", "C", "in"),
200        create_edge("B", "out", "D", "in1"),
201        create_edge("C", "out", "D", "in2"),
202    ];
203
204    let graph = Graph::new(vec![node_a, node_b, node_c, node_d], edges);
205    assert!(graph.validate().is_empty(), "Graph validation failed");
206    graph
207}
Source

pub fn nodes(&self) -> &HashMap<NodeName, Node>

Returns a reference to all nodes in the graph, keyed by name.

Examples found in repository?
examples/linear_flow.rs (line 23)
20fn main() {
21    // Create a linear graph: A -> B -> C
22    let graph = create_linear_graph();
23    println!("Created graph with {} nodes", graph.nodes().len());
24
25    // Create a network from the graph
26    let mut net = NetSim::new(graph);
27
28    // Create a packet outside the network
29    let packet_id = match net.do_action(&NetAction::CreatePacket(None)) {
30        NetActionResponse::Success(NetActionResponseData::Packet(id), _) => {
31            println!("Created packet: {}", id);
32            id
33        }
34        _ => panic!("Failed to create packet"),
35    };
36
37    // Transport packet to the edge A -> B
38    let edge_a_b = PacketLocation::Edge(Edge {
39        source: PortRef {
40            node_name: "A".to_string(),
41            port_type: PortType::Output,
42            port_name: "out".to_string(),
43        },
44        target: PortRef {
45            node_name: "B".to_string(),
46            port_type: PortType::Input,
47            port_name: "in".to_string(),
48        },
49    });
50    net.do_action(&NetAction::TransportPacketToLocation(
51        packet_id.clone(),
52        edge_a_b,
53    ));
54    println!("Placed packet on edge A -> B");
55
56    // Run the network - packet moves to B's input port and triggers an epoch
57    net.run_until_blocked();
58    println!("Ran network until blocked");
59
60    // Check for startable epochs
61    let startable = net.get_startable_epochs();
62    println!("Startable epochs: {}", startable.len());
63
64    if let Some(epoch_id) = startable.first() {
65        // Start the epoch
66        match net.do_action(&NetAction::StartEpoch(epoch_id.clone())) {
67            NetActionResponse::Success(NetActionResponseData::StartedEpoch(epoch), _) => {
68                println!("Started epoch {} on node {}", epoch.id, epoch.node_name);
69
70                // In a real scenario, external code would process the packet here
71                // For this example, we'll just consume it and create an output
72
73                // Consume the input packet
74                net.do_action(&NetAction::ConsumePacket(packet_id));
75                println!("Consumed input packet");
76
77                // Create an output packet
78                let output_packet =
79                    match net.do_action(&NetAction::CreatePacket(Some(epoch.id.clone()))) {
80                        NetActionResponse::Success(NetActionResponseData::Packet(id), _) => id,
81                        _ => panic!("Failed to create output packet"),
82                    };
83                println!("Created output packet: {}", output_packet);
84
85                // Load it into the output port
86                net.do_action(&NetAction::LoadPacketIntoOutputPort(
87                    output_packet.clone(),
88                    "out".to_string(),
89                ));
90                println!("Loaded packet into output port");
91
92                // Send the output salvo
93                net.do_action(&NetAction::SendOutputSalvo(
94                    epoch.id.clone(),
95                    "default".to_string(),
96                ));
97                println!("Sent output salvo - packet is now on edge B -> C");
98
99                // Finish the epoch
100                net.do_action(&NetAction::FinishEpoch(epoch.id));
101                println!("Finished epoch");
102
103                // Run the network again - packet moves to C
104                net.run_until_blocked();
105                println!("Ran network until blocked again");
106
107                // Check for new startable epochs at C
108                let startable_c = net.get_startable_epochs();
109                println!(
110                    "New startable epochs (should be at C): {}",
111                    startable_c.len()
112                );
113            }
114            _ => panic!("Failed to start epoch"),
115        }
116    }
117
118    println!("\nLinear flow example complete!");
119}
Source

pub fn edges(&self) -> &HashSet<Edge>

Returns a reference to all edges in the graph.

Source

pub fn get_edge_by_tail(&self, output_port_ref: &PortRef) -> Option<&Edge>

Returns the edge that has the given output port as its source (tail).

Source

pub fn get_edges_by_head(&self, input_port_ref: &PortRef) -> &[Edge]

Returns all edges that have the given input port as their target (head). Fan-in is allowed, so multiple edges can connect to the same input port.

Source

pub fn validate(&self) -> Vec<GraphValidationError>

Validates the graph structure.

Returns a list of all validation errors found. An empty list means the graph is valid.

Examples found in repository?
examples/linear_flow.rs (line 135)
122fn create_linear_graph() -> Graph {
123    let nodes = vec![
124        create_node("A", vec![], vec!["out"]),
125        create_node("B", vec!["in"], vec!["out"]),
126        create_node("C", vec!["in"], vec![]),
127    ];
128
129    let edges = vec![
130        create_edge("A", "out", "B", "in"),
131        create_edge("B", "out", "C", "in"),
132    ];
133
134    let graph = Graph::new(nodes, edges);
135    assert!(graph.validate().is_empty(), "Graph validation failed");
136    graph
137}
More examples
Hide additional examples
examples/diamond_flow.rs (line 205)
122fn create_diamond_graph() -> Graph {
123    // Node A: source with two outputs
124    let node_a = Node {
125        name: "A".to_string(),
126        in_ports: HashMap::new(),
127        out_ports: [
128            (
129                "out1".to_string(),
130                Port {
131                    slots_spec: PortSlotSpec::Infinite,
132                },
133            ),
134            (
135                "out2".to_string(),
136                Port {
137                    slots_spec: PortSlotSpec::Infinite,
138                },
139            ),
140        ]
141        .into(),
142        in_salvo_conditions: IndexMap::new(),
143        out_salvo_conditions: IndexMap::new(),
144    };
145
146    // Node B: one input, one output
147    let node_b = create_simple_node("B");
148
149    // Node C: one input, one output
150    let node_c = create_simple_node("C");
151
152    // Node D: TWO inputs (requires both), no outputs
153    let node_d = Node {
154        name: "D".to_string(),
155        in_ports: [
156            (
157                "in1".to_string(),
158                Port {
159                    slots_spec: PortSlotSpec::Infinite,
160                },
161            ),
162            (
163                "in2".to_string(),
164                Port {
165                    slots_spec: PortSlotSpec::Infinite,
166                },
167            ),
168        ]
169        .into(),
170        out_ports: HashMap::new(),
171        in_salvo_conditions: IndexMap::from([(
172            "default".to_string(),
173            SalvoCondition {
174                max_salvos: MaxSalvos::Finite(1),
175                ports: [
176                    ("in1".to_string(), PacketCount::All),
177                    ("in2".to_string(), PacketCount::All),
178                ]
179                .into_iter()
180                .collect(),
181                // Require BOTH inputs to be non-empty
182                term: SalvoConditionTerm::And(vec![
183                    SalvoConditionTerm::Port {
184                        port_name: "in1".to_string(),
185                        state: PortState::NonEmpty,
186                    },
187                    SalvoConditionTerm::Port {
188                        port_name: "in2".to_string(),
189                        state: PortState::NonEmpty,
190                    },
191                ]),
192            },
193        )]),
194        out_salvo_conditions: IndexMap::new(),
195    };
196
197    let edges = vec![
198        create_edge("A", "out1", "B", "in"),
199        create_edge("A", "out2", "C", "in"),
200        create_edge("B", "out", "D", "in1"),
201        create_edge("C", "out", "D", "in2"),
202    ];
203
204    let graph = Graph::new(vec![node_a, node_b, node_c, node_d], edges);
205    assert!(graph.validate().is_empty(), "Graph validation failed");
206    graph
207}

Trait Implementations§

Source§

impl Clone for Graph

Source§

fn clone(&self) -> Graph

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Graph

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

§

impl Freeze for Graph

§

impl RefUnwindSafe for Graph

§

impl Send for Graph

§

impl Sync for Graph

§

impl Unpin for Graph

§

impl UnwindSafe for Graph

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V