[−][src]Trait ndarray_linalg::krylov::Orthogonalizer
Trait for creating orthogonal basis from iterator of arrays
Associated Types
Loading content...Required methods
fn dim(&self) -> usize
Dimension of input array
fn len(&self) -> usize
Number of cached basis
fn orthogonalize<S>(&self, a: &mut ArrayBase<S, Ix1>) -> Array1<Self::Elem> where
S: DataMut<Elem = Self::Elem>,
S: DataMut<Elem = Self::Elem>,
Orthogonalize given vector using current basis
Panic
- if the size of the input array mismatches to the dimension
fn append<S>(
&mut self,
a: ArrayBase<S, Ix1>,
rtol: <Self::Elem as Scalar>::Real
) -> Result<Array1<Self::Elem>, Array1<Self::Elem>> where
S: DataMut<Elem = Self::Elem>,
&mut self,
a: ArrayBase<S, Ix1>,
rtol: <Self::Elem as Scalar>::Real
) -> Result<Array1<Self::Elem>, Array1<Self::Elem>> where
S: DataMut<Elem = Self::Elem>,
Add new vector if the residual is larger than relative tolerance
Returns
Coefficients to the i
-th Q-vector
- The size of array must be
self.len() + 1
- The last element is the residual norm of input vector
Panic
- if the size of the input array mismatches to the dimension
fn get_q(&self) -> Q<Self::Elem>
Get Q-matrix of generated basis
Provided methods
Loading content...Implementors
impl<A: Scalar + Lapack> Orthogonalizer for MGS<A>
[src]
type Elem = A
fn dim(&self) -> usize
[src]
fn len(&self) -> usize
[src]
fn orthogonalize<S>(&self, a: &mut ArrayBase<S, Ix1>) -> Array1<A> where
A: Lapack,
S: DataMut<Elem = A>,
[src]
A: Lapack,
S: DataMut<Elem = A>,
fn append<S>(
&mut self,
a: ArrayBase<S, Ix1>,
rtol: A::Real
) -> Result<Array1<A>, Array1<A>> where
A: Lapack,
S: Data<Elem = A>,
[src]
&mut self,
a: ArrayBase<S, Ix1>,
rtol: A::Real
) -> Result<Array1<A>, Array1<A>> where
A: Lapack,
S: Data<Elem = A>,