pub struct Dataset<F>where
F: Float,{
pub y: Array1<F>,
pub x: Array2<F>,
pub linear_offset: Option<Array1<F>>,
pub weights: Option<Array1<F>>,
pub freqs: Option<Array1<F>>,
}Fields§
§y: Array1<F>the observation of response data by event
x: Array2<F>the design matrix with events in rows and instances in columns
linear_offset: Option<Array1<F>>The offset in the linear predictor for each data point. This can be used to fix the effect of control variables.
weights: Option<Array1<F>>The variance weight of each observation (a.k.a. analytic weights)
freqs: Option<Array1<F>>The frequency of each observation (traditionally positive integers)
Implementations§
Source§impl<F> Dataset<F>where
F: Float,
impl<F> Dataset<F>where
F: Float,
Sourcepub fn linear_predictor(&self, regressors: &Array1<F>) -> Array1<F>
pub fn linear_predictor(&self, regressors: &Array1<F>) -> Array1<F>
Returns the linear predictors, i.e. the design matrix multiplied by the regression parameters. Each entry in the resulting array is the linear predictor for a given observation. If linear offsets for each observation are provided, these are added to the linear predictors
Trait Implementations§
Auto Trait Implementations§
impl<F> Freeze for Dataset<F>
impl<F> RefUnwindSafe for Dataset<F>where
F: RefUnwindSafe,
impl<F> Send for Dataset<F>where
F: Send,
impl<F> Sync for Dataset<F>where
F: Sync,
impl<F> Unpin for Dataset<F>
impl<F> UnsafeUnpin for Dataset<F>
impl<F> UnwindSafe for Dataset<F>where
F: RefUnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more