pub struct LU<T: Scalar, R: DimMin<C>, C: Dim>{ /* private fields */ }
Expand description
LU decomposition with partial pivoting.
This decomposes a matrix M
with m rows and n columns into three parts:
L
which is am × min(m, n)
lower-triangular matrix.U
which is amin(m, n) × n
upper-triangular matrix.P
which is am * m
permutation matrix.
Those are such that M == P * L * U
.
Implementations§
Source§impl<T, R, C: Dim> LU<T, R, C>where
T: Zero + One + LUScalar,
R: DimMin<C> + Dim,
DefaultAllocator: Allocator<R, C> + Allocator<R, R> + Allocator<R, DimMinimum<R, C>> + Allocator<DimMinimum<R, C>, C> + Allocator<DimMinimum<R, C>>,
impl<T, R, C: Dim> LU<T, R, C>where
T: Zero + One + LUScalar,
R: DimMin<C> + Dim,
DefaultAllocator: Allocator<R, C> + Allocator<R, R> + Allocator<R, DimMinimum<R, C>> + Allocator<DimMinimum<R, C>, C> + Allocator<DimMinimum<R, C>>,
Sourcepub fn new(m: OMatrix<T, R, C>) -> Self
pub fn new(m: OMatrix<T, R, C>) -> Self
Computes the LU decomposition with partial (row) pivoting of matrix
.
Sourcepub fn l(&self) -> OMatrix<T, R, DimMinimum<R, C>>
pub fn l(&self) -> OMatrix<T, R, DimMinimum<R, C>>
Gets the lower-triangular matrix part of the decomposition.
Sourcepub fn u(&self) -> OMatrix<T, DimMinimum<R, C>, C>
pub fn u(&self) -> OMatrix<T, DimMinimum<R, C>, C>
Gets the upper-triangular matrix part of the decomposition.
Sourcepub fn p(&self) -> OMatrix<T, R, R>
pub fn p(&self) -> OMatrix<T, R, R>
Gets the row permutation matrix of this decomposition.
Computing the permutation matrix explicitly is costly and usually not necessary.
To permute rows of a matrix or vector, use the method self.permute(...)
instead.
Sourcepub fn permutation_indices(&self) -> &OVector<i32, DimMinimum<R, C>>
pub fn permutation_indices(&self) -> &OVector<i32, DimMinimum<R, C>>
Gets the LAPACK permutation indices.
Sourcepub fn permute<C2: Dim>(&self, rhs: &mut OMatrix<T, R, C2>)where
DefaultAllocator: Allocator<R, C2>,
pub fn permute<C2: Dim>(&self, rhs: &mut OMatrix<T, R, C2>)where
DefaultAllocator: Allocator<R, C2>,
Applies the permutation matrix to a given matrix or vector in-place.
Sourcepub fn solve<R2: Dim, C2: Dim, S2>(
&self,
b: &Matrix<T, R2, C2, S2>,
) -> Option<OMatrix<T, R2, C2>>
pub fn solve<R2: Dim, C2: Dim, S2>( &self, b: &Matrix<T, R2, C2, S2>, ) -> Option<OMatrix<T, R2, C2>>
Solves the linear system self * x = b
, where x
is the unknown to be determined.
Sourcepub fn solve_transpose<R2: Dim, C2: Dim, S2>(
&self,
b: &Matrix<T, R2, C2, S2>,
) -> Option<OMatrix<T, R2, C2>>
pub fn solve_transpose<R2: Dim, C2: Dim, S2>( &self, b: &Matrix<T, R2, C2, S2>, ) -> Option<OMatrix<T, R2, C2>>
Solves the linear system self.transpose() * x = b
, where x
is the unknown to be
determined.
Sourcepub fn solve_conjugate_transpose<R2: Dim, C2: Dim, S2>(
&self,
b: &Matrix<T, R2, C2, S2>,
) -> Option<OMatrix<T, R2, C2>>
pub fn solve_conjugate_transpose<R2: Dim, C2: Dim, S2>( &self, b: &Matrix<T, R2, C2, S2>, ) -> Option<OMatrix<T, R2, C2>>
Solves the linear system self.adjoint() * x = b
, where x
is the unknown to
be determined.
Sourcepub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut OMatrix<T, R2, C2>) -> bool
pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut OMatrix<T, R2, C2>) -> bool
Solves in-place the linear system self * x = b
, where x
is the unknown to be determined.
Returns false
if no solution was found (the decomposed matrix is singular).
Sourcepub fn solve_transpose_mut<R2: Dim, C2: Dim>(
&self,
b: &mut OMatrix<T, R2, C2>,
) -> bool
pub fn solve_transpose_mut<R2: Dim, C2: Dim>( &self, b: &mut OMatrix<T, R2, C2>, ) -> bool
Solves in-place the linear system self.transpose() * x = b
, where x
is the unknown to be
determined.
Returns false
if no solution was found (the decomposed matrix is singular).
Trait Implementations§
impl<T: Scalar + Copy, R: DimMin<C>, C: Dim> Copy for LU<T, R, C>where
DefaultAllocator: Allocator<R, C> + Allocator<DimMinimum<R, C>>,
OMatrix<T, R, C>: Copy,
OVector<i32, DimMinimum<R, C>>: Copy,
Auto Trait Implementations§
impl<T, R, C> !Freeze for LU<T, R, C>
impl<T, R, C> !RefUnwindSafe for LU<T, R, C>
impl<T, R, C> !Send for LU<T, R, C>
impl<T, R, C> !Sync for LU<T, R, C>
impl<T, R, C> !Unpin for LU<T, R, C>
impl<T, R, C> !UnwindSafe for LU<T, R, C>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.