Struct nalgebra_lapack::SVD [] [src]

pub struct SVD<N: Scalar, R: DimMin<C>, C: Dim> where
    DefaultAllocator: Allocator<N, R, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, C, C>, 
{ pub u: MatrixN<N, R>, pub vt: MatrixN<N, C>, pub singular_values: VectorN<N, DimMinimum<R, C>>, }

The SVD decomposition of a general matrix.

Fields

The left-singular vectors U of this SVD.

The right-singular vectors V^t of this SVD.

The singular values of this SVD.

Methods

impl<N: SVDScalar<R, C>, R: DimMin<C>, C: Dim> SVD<N, R, C> where
    DefaultAllocator: Allocator<N, R, R> + Allocator<N, R, C> + Allocator<N, DimMinimum<R, C>> + Allocator<N, C, C>, 
[src]

[src]

Computes the Singular Value Decomposition of matrix.

impl<R: DimMin<C>, C: Dim> SVD<f32, R, C> where
    DefaultAllocator: Allocator<f32, R, C> + Allocator<f32, C, R> + Allocator<f32, U1, R> + Allocator<f32, U1, C> + Allocator<f32, R, R> + Allocator<f32, DimMinimum<R, C>> + Allocator<f32, DimMinimum<R, C>, R> + Allocator<f32, DimMinimum<R, C>, C> + Allocator<f32, R, DimMinimum<R, C>> + Allocator<f32, C, C>, 
[src]

[src]

Reconstructs the matrix from its decomposition.

Useful if some components (e.g. some singular values) of this decomposition have been manually changed by the user.

[src]

Computes the pseudo-inverse of the decomposed matrix.

All singular value below epsilon will be set to zero instead of being inverted.

[src]

The rank of the decomposed matrix.

This is the number of singular values that are not too small (i.e. greater than the given epsilon).

impl<R: DimMin<C>, C: Dim> SVD<f64, R, C> where
    DefaultAllocator: Allocator<f64, R, C> + Allocator<f64, C, R> + Allocator<f64, U1, R> + Allocator<f64, U1, C> + Allocator<f64, R, R> + Allocator<f64, DimMinimum<R, C>> + Allocator<f64, DimMinimum<R, C>, R> + Allocator<f64, DimMinimum<R, C>, C> + Allocator<f64, R, DimMinimum<R, C>> + Allocator<f64, C, C>, 
[src]

[src]

Reconstructs the matrix from its decomposition.

Useful if some components (e.g. some singular values) of this decomposition have been manually changed by the user.

[src]

Computes the pseudo-inverse of the decomposed matrix.

All singular value below epsilon will be set to zero instead of being inverted.

[src]

The rank of the decomposed matrix.

This is the number of singular values that are not too small (i.e. greater than the given epsilon).

Trait Implementations

impl<N: Clone + Scalar, R: Clone + DimMin<C>, C: Clone + Dim> Clone for SVD<N, R, C> where
    DefaultAllocator: Allocator<N, R, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, C, C>, 
[src]

[src]

Returns a copy of the value. Read more

1.0.0
[src]

Performs copy-assignment from source. Read more

impl<N: Debug + Scalar, R: Debug + DimMin<C>, C: Debug + Dim> Debug for SVD<N, R, C> where
    DefaultAllocator: Allocator<N, R, R> + Allocator<N, DimMinimum<R, C>> + Allocator<N, C, C>, 
[src]

[src]

Formats the value using the given formatter. Read more

impl<N: Scalar, R: DimMin<C>, C: Dim> Copy for SVD<N, R, C> where
    DefaultAllocator: Allocator<N, C, C> + Allocator<N, R, R> + Allocator<N, DimMinimum<R, C>>,
    MatrixMN<N, R, R>: Copy,
    MatrixMN<N, C, C>: Copy,
    VectorN<N, DimMinimum<R, C>>: Copy
[src]

Auto Trait Implementations

impl<N, R, C> !Send for SVD<N, R, C>

impl<N, R, C> !Sync for SVD<N, R, C>