pub struct LU<T, R, C>where
T: ComplexField,
R: DimMin<C>,
C: Dim,
DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), <R as DimMin<C>>::Output>,{ /* private fields */ }
Expand description
LU decomposition with partial (row) pivoting.
Implementations§
Source§impl<T, R, C> LU<T, R, C>where
T: ComplexField,
R: DimMin<C>,
C: Dim,
DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), <R as DimMin<C>>::Output>,
impl<T, R, C> LU<T, R, C>where
T: ComplexField,
R: DimMin<C>,
C: Dim,
DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), <R as DimMin<C>>::Output>,
Sourcepub fn new(
matrix: Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>,
) -> LU<T, R, C>
pub fn new( matrix: Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>, ) -> LU<T, R, C>
Computes the LU decomposition with partial (row) pivoting of matrix
.
Sourcepub fn l(
&self,
) -> Matrix<T, R, <R as DimMin<C>>::Output, <DefaultAllocator as Allocator<T, R, <R as DimMin<C>>::Output>>::Buffer>
pub fn l( &self, ) -> Matrix<T, R, <R as DimMin<C>>::Output, <DefaultAllocator as Allocator<T, R, <R as DimMin<C>>::Output>>::Buffer>
The lower triangular matrix of this decomposition.
Sourcepub fn l_unpack(
self,
) -> Matrix<T, R, <R as DimMin<C>>::Output, <DefaultAllocator as Allocator<T, R, <R as DimMin<C>>::Output>>::Buffer>
pub fn l_unpack( self, ) -> Matrix<T, R, <R as DimMin<C>>::Output, <DefaultAllocator as Allocator<T, R, <R as DimMin<C>>::Output>>::Buffer>
The lower triangular matrix of this decomposition.
Sourcepub fn u(
&self,
) -> Matrix<T, <R as DimMin<C>>::Output, C, <DefaultAllocator as Allocator<T, <R as DimMin<C>>::Output, C>>::Buffer>
pub fn u( &self, ) -> Matrix<T, <R as DimMin<C>>::Output, C, <DefaultAllocator as Allocator<T, <R as DimMin<C>>::Output, C>>::Buffer>
The upper triangular matrix of this decomposition.
Sourcepub fn p(&self) -> &PermutationSequence<<R as DimMin<C>>::Output>
pub fn p(&self) -> &PermutationSequence<<R as DimMin<C>>::Output>
The row permutations of this decomposition.
Sourcepub fn unpack(
self,
) -> (PermutationSequence<<R as DimMin<C>>::Output>, Matrix<T, R, <R as DimMin<C>>::Output, <DefaultAllocator as Allocator<T, R, <R as DimMin<C>>::Output>>::Buffer>, Matrix<T, <R as DimMin<C>>::Output, C, <DefaultAllocator as Allocator<T, <R as DimMin<C>>::Output, C>>::Buffer>)where
DefaultAllocator: Allocator<T, R, <R as DimMin<C>>::Output> + Allocator<T, <R as DimMin<C>>::Output, C> + Reallocator<T, R, C, R, <R as DimMin<C>>::Output>,
pub fn unpack(
self,
) -> (PermutationSequence<<R as DimMin<C>>::Output>, Matrix<T, R, <R as DimMin<C>>::Output, <DefaultAllocator as Allocator<T, R, <R as DimMin<C>>::Output>>::Buffer>, Matrix<T, <R as DimMin<C>>::Output, C, <DefaultAllocator as Allocator<T, <R as DimMin<C>>::Output, C>>::Buffer>)where
DefaultAllocator: Allocator<T, R, <R as DimMin<C>>::Output> + Allocator<T, <R as DimMin<C>>::Output, C> + Reallocator<T, R, C, R, <R as DimMin<C>>::Output>,
The row permutations and two triangular matrices of this decomposition: (P, L, U)
.
Source§impl<T, D> LU<T, D, D>where
T: ComplexField,
D: DimMin<D, Output = D>,
DefaultAllocator: Allocator<T, D, D> + Allocator<(usize, usize), D>,
impl<T, D> LU<T, D, D>where
T: ComplexField,
D: DimMin<D, Output = D>,
DefaultAllocator: Allocator<T, D, D> + Allocator<(usize, usize), D>,
Sourcepub fn solve<R2, C2, S2>(
&self,
b: &Matrix<T, R2, C2, S2>,
) -> Option<Matrix<T, R2, C2, <DefaultAllocator as Allocator<T, R2, C2>>::Buffer>>where
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
DefaultAllocator: Allocator<T, R2, C2>,
pub fn solve<R2, C2, S2>(
&self,
b: &Matrix<T, R2, C2, S2>,
) -> Option<Matrix<T, R2, C2, <DefaultAllocator as Allocator<T, R2, C2>>::Buffer>>where
R2: Dim,
C2: Dim,
S2: Storage<T, R2, C2>,
ShapeConstraint: SameNumberOfRows<R2, D>,
DefaultAllocator: Allocator<T, R2, C2>,
Solves the linear system self * x = b
, where x
is the unknown to be determined.
Returns None
if self
is not invertible.
Sourcepub fn solve_mut<R2, C2, S2>(&self, b: &mut Matrix<T, R2, C2, S2>) -> bool
pub fn solve_mut<R2, C2, S2>(&self, b: &mut Matrix<T, R2, C2, S2>) -> bool
Solves the linear system self * x = b
, where x
is the unknown to be determined.
If the decomposed matrix is not invertible, this returns false
and its input b
may
be overwritten with garbage.
Sourcepub fn try_inverse(
&self,
) -> Option<Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>>
pub fn try_inverse( &self, ) -> Option<Matrix<T, D, D, <DefaultAllocator as Allocator<T, D, D>>::Buffer>>
Computes the inverse of the decomposed matrix.
Returns None
if the matrix is not invertible.
Sourcepub fn try_inverse_to<S2>(&self, out: &mut Matrix<T, D, D, S2>) -> boolwhere
S2: StorageMut<T, D, D>,
pub fn try_inverse_to<S2>(&self, out: &mut Matrix<T, D, D, S2>) -> boolwhere
S2: StorageMut<T, D, D>,
Computes the inverse of the decomposed matrix and outputs the result to out
.
If the decomposed matrix is not invertible, this returns false
and out
may be
overwritten with garbage.
Sourcepub fn determinant(&self) -> T
pub fn determinant(&self) -> T
Computes the determinant of the decomposed matrix.
Sourcepub fn is_invertible(&self) -> bool
pub fn is_invertible(&self) -> bool
Indicates if the decomposed matrix is invertible.
Trait Implementations§
impl<T, R, C> Copy for LU<T, R, C>where
T: ComplexField,
R: DimMin<C>,
C: Dim,
DefaultAllocator: Allocator<T, R, C> + Allocator<(usize, usize), <R as DimMin<C>>::Output>,
Matrix<T, R, C, <DefaultAllocator as Allocator<T, R, C>>::Buffer>: Copy,
PermutationSequence<<R as DimMin<C>>::Output>: Copy,
Auto Trait Implementations§
impl<T, R, C> !Freeze for LU<T, R, C>
impl<T, R, C> !RefUnwindSafe for LU<T, R, C>
impl<T, R, C> !Send for LU<T, R, C>
impl<T, R, C> !Sync for LU<T, R, C>
impl<T, R, C> !Unpin for LU<T, R, C>
impl<T, R, C> !UnwindSafe for LU<T, R, C>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.