Struct RedshiftDataSpec

Source
pub struct RedshiftDataSpec {
    pub data_rearrangement: Option<String>,
    pub data_schema: Option<String>,
    pub data_schema_uri: Option<String>,
    pub database_credentials: RedshiftDatabaseCredentials,
    pub database_information: RedshiftDatabase,
    pub s3_staging_location: String,
    pub select_sql_query: String,
}
Expand description

Describes the data specification of an Amazon Redshift DataSource.

Fields§

§data_rearrangement: Option<String>

A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource. If the DataRearrangement parameter is not provided, all of the input data is used to create the Datasource.

There are multiple parameters that control what data is used to create a datasource:

  • percentBegin

    Use percentBegin to indicate the beginning of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • percentEnd

    Use percentEnd to indicate the end of the range of the data used to create the Datasource. If you do not include percentBegin and percentEnd, Amazon ML includes all of the data when creating the datasource.

  • complement

    The complement parameter instructs Amazon ML to use the data that is not included in the range of percentBegin to percentEnd to create a datasource. The complement parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for percentBegin and percentEnd, along with the complement parameter.

    For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.

    Datasource for evaluation: {"splitting":{"percentBegin":0, "percentEnd":25}}

    Datasource for training: {"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}

  • strategy

    To change how Amazon ML splits the data for a datasource, use the strategy parameter.

    The default value for the strategy parameter is sequential, meaning that Amazon ML takes all of the data records between the percentBegin and percentEnd parameters for the datasource, in the order that the records appear in the input data.

    The following two DataRearrangement lines are examples of sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}

    To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the strategy parameter to random and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between percentBegin and percentEnd. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.

    The following two DataRearrangement lines are examples of non-sequentially ordered training and evaluation datasources:

    Datasource for evaluation: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://mys3path/bucket/file.csv"}}

    Datasource for training: {"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://mys3path/bucket/file.csv", "complement":"true"}}

§data_schema: Option<String>

A JSON string that represents the schema for an Amazon Redshift DataSource. The DataSchema defines the structure of the observation data in the data file(s) referenced in the DataSource.

A DataSchema is not required if you specify a DataSchemaUri.

Define your DataSchema as a series of key-value pairs. attributes and excludedVariableNames have an array of key-value pairs for their value. Use the following format to define your DataSchema.

{ "version": "1.0",

"recordAnnotationFieldName": "F1",

"recordWeightFieldName": "F2",

"targetFieldName": "F3",

"dataFormat": "CSV",

"dataFileContainsHeader": true,

"attributes": [

{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],

"excludedVariableNames": [ "F6" ] }

§data_schema_uri: Option<String>

Describes the schema location for an Amazon Redshift DataSource.

§database_credentials: RedshiftDatabaseCredentials

Describes AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon Redshift database.

§database_information: RedshiftDatabase

Describes the DatabaseName and ClusterIdentifier for an Amazon Redshift DataSource.

§s3_staging_location: String

Describes an Amazon S3 location to store the result set of the SelectSqlQuery query.

§select_sql_query: String

Describes the SQL Query to execute on an Amazon Redshift database for an Amazon Redshift DataSource.

Trait Implementations§

Source§

impl Clone for RedshiftDataSpec

Source§

fn clone(&self) -> RedshiftDataSpec

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for RedshiftDataSpec

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for RedshiftDataSpec

Source§

fn default() -> RedshiftDataSpec

Returns the “default value” for a type. Read more
Source§

impl PartialEq for RedshiftDataSpec

Source§

fn eq(&self, other: &RedshiftDataSpec) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Serialize for RedshiftDataSpec

Source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
Source§

impl StructuralPartialEq for RedshiftDataSpec

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more