Parser

Struct Parser 

Source
pub struct Parser<Reply: TermReplySender + Clone> { /* private fields */ }
Expand description

A parser for terminal output which produces an in-memory representation of the terminal contents.

Implementations§

Source§

impl<Reply: TermReplySender + Clone> Parser<Reply>

Source

pub fn new( rows: u16, cols: u16, scrollback_len: usize, reply_sender: Reply, ) -> Self

Creates a new terminal parser of the given size and with the given amount of scrollback.

Source

pub fn process(&mut self, bytes: &[u8])

Processes the contents of the given byte string, and updates the in-memory terminal state.

Source

pub fn set_size(&mut self, rows: u16, cols: u16)

Resizes the terminal.

Source

pub fn set_scrollback(&mut self, rows: usize)

Scrolls to the given position in the scrollback.

This position indicates the offset from the top of the screen, and should be 0 to put the normal screen in view.

This affects the return values of methods called on parser.screen(): for instance, parser.screen().cell(0, 0) will return the top left corner of the screen after taking the scrollback offset into account. It does not affect parser.process() at all.

The value given will be clamped to the actual size of the scrollback.

Source

pub fn screen(&self) -> &Screen<Reply>

Returns a reference to a Screen object containing the terminal state.

Trait Implementations§

Source§

impl<Reply: TermReplySender + Clone> Write for Parser<Reply>

Source§

fn write(&mut self, buf: &[u8]) -> Result<usize>

Writes a buffer into this writer, returning how many bytes were written. Read more
Source§

fn flush(&mut self) -> Result<()>

Flushes this output stream, ensuring that all intermediately buffered contents reach their destination. Read more
1.36.0 · Source§

fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize, Error>

Like write, except that it writes from a slice of buffers. Read more
Source§

fn is_write_vectored(&self) -> bool

🔬This is a nightly-only experimental API. (can_vector)
Determines if this Writer has an efficient write_vectored implementation. Read more
1.0.0 · Source§

fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>

Attempts to write an entire buffer into this writer. Read more
Source§

fn write_all_vectored(&mut self, bufs: &mut [IoSlice<'_>]) -> Result<(), Error>

🔬This is a nightly-only experimental API. (write_all_vectored)
Attempts to write multiple buffers into this writer. Read more
1.0.0 · Source§

fn write_fmt(&mut self, args: Arguments<'_>) -> Result<(), Error>

Writes a formatted string into this writer, returning any error encountered. Read more
1.0.0 · Source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adapter for this instance of Write. Read more

Auto Trait Implementations§

§

impl<Reply> Freeze for Parser<Reply>
where Reply: Freeze,

§

impl<Reply> RefUnwindSafe for Parser<Reply>
where Reply: RefUnwindSafe,

§

impl<Reply> Send for Parser<Reply>
where Reply: Send,

§

impl<Reply> Sync for Parser<Reply>
where Reply: Sync,

§

impl<Reply> Unpin for Parser<Reply>
where Reply: Unpin,

§

impl<Reply> UnwindSafe for Parser<Reply>
where Reply: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> ExecutableCommand for T
where T: Write + ?Sized,

Source§

fn execute(&mut self, command: impl Command) -> Result<&mut T, Error>

Executes the given command directly.

The given command its ANSI escape code will be written and flushed onto Self.

§Arguments
  • Command

    The command that you want to execute directly.

§Example
use std::io;
use crossterm::{ExecutableCommand, style::Print};

fn main() -> io::Result<()> {
     // will be executed directly
      io::stdout()
        .execute(Print("sum:\n".to_string()))?
        .execute(Print(format!("1 + 1= {} ", 1 + 1)))?;

      Ok(())

     // ==== Output ====
     // sum:
     // 1 + 1 = 2
}

Have a look over at the Command API for more details.

§Notes
  • In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
  • In case of Windows versions lower than 10, a direct WinAPI call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> QueueableCommand for T
where T: Write + ?Sized,

Source§

fn queue(&mut self, command: impl Command) -> Result<&mut T, Error>

Queues the given command for further execution.

Queued commands will be executed in the following cases:

  • When flush is called manually on the given type implementing io::Write.
  • The terminal will flush automatically if the buffer is full.
  • Each line is flushed in case of stdout, because it is line buffered.
§Arguments
  • Command

    The command that you want to queue for later execution.

§Examples
use std::io::{self, Write};
use crossterm::{QueueableCommand, style::Print};

 fn main() -> io::Result<()> {
    let mut stdout = io::stdout();

    // `Print` will executed executed when `flush` is called.
    stdout
        .queue(Print("foo 1\n".to_string()))?
        .queue(Print("foo 2".to_string()))?;

    // some other code (no execution happening here) ...

    // when calling `flush` on `stdout`, all commands will be written to the stdout and therefore executed.
    stdout.flush()?;

    Ok(())

    // ==== Output ====
    // foo 1
    // foo 2
}

Have a look over at the Command API for more details.

§Notes
  • In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
  • In case of Windows versions lower than 10, a direct WinAPI call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<W> SynchronizedUpdate for W
where W: Write + ?Sized,

Source§

fn sync_update<T>( &mut self, operations: impl FnOnce(&mut W) -> T, ) -> Result<T, Error>

Performs a set of actions within a synchronous update.

Updates will be suspended in the terminal, the function will be executed against self, updates will be resumed, and a flush will be performed.

§Arguments
  • Function

    A function that performs the operations that must execute in a synchronized update.

§Examples
use std::io;
use crossterm::{ExecutableCommand, SynchronizedUpdate, style::Print};

fn main() -> io::Result<()> {
    let mut stdout = io::stdout();

    stdout.sync_update(|stdout| {
        stdout.execute(Print("foo 1\n".to_string()))?;
        stdout.execute(Print("foo 2".to_string()))?;
        // The effects of the print command will not be present in the terminal
        // buffer, but not visible in the terminal.
        std::io::Result::Ok(())
    })?;

    // The effects of the commands will be visible.

    Ok(())

    // ==== Output ====
    // foo 1
    // foo 2
}
§Notes

This command is performed only using ANSI codes, and will do nothing on terminals that do not support ANSI codes, or this specific extension.

When rendering the screen of the terminal, the Emulator usually iterates through each visible grid cell and renders its current state. With applications updating the screen a at higher frequency this can cause tearing.

This mode attempts to mitigate that.

When the synchronization mode is enabled following render calls will keep rendering the last rendered state. The terminal Emulator keeps processing incoming text and sequences. When the synchronized update mode is disabled again the renderer may fetch the latest screen buffer state again, effectively avoiding the tearing effect by unintentionally rendering in the middle a of an application screen update.

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.