pub struct NonZeroDecimal(/* private fields */);Implementations§
Methods from Deref<Target = Decimal>§
pub const MIN: Decimal = MIN
pub const MAX: Decimal = MAX
pub const ZERO: Decimal = ZERO
pub const ONE: Decimal = ONE
pub const NEGATIVE_ONE: Decimal = NEGATIVE_ONE
pub const TWO: Decimal = TWO
pub const TEN: Decimal = TEN
pub const ONE_HUNDRED: Decimal = ONE_HUNDRED
pub const ONE_THOUSAND: Decimal = ONE_THOUSAND
pub const MAX_SCALE: u32 = 28u32
Sourcepub fn scale(&self) -> u32
pub fn scale(&self) -> u32
Returns the scale of the decimal number, otherwise known as e.
§Example
let num = Decimal::new(1234, 3);
assert_eq!(num.scale(), 3u32);Sourcepub fn mantissa(&self) -> i128
pub fn mantissa(&self) -> i128
Returns the mantissa of the decimal number.
§Example
let num = dec!(-1.2345678);
assert_eq!(num.mantissa(), -12345678i128);
assert_eq!(num.scale(), 7);Sourcepub fn is_zero(&self) -> bool
pub fn is_zero(&self) -> bool
Returns true if this Decimal number is equivalent to zero.
§Example
let num = Decimal::ZERO;
assert!(num.is_zero());Sourcepub fn is_integer(&self) -> bool
pub fn is_integer(&self) -> bool
Returns true if this Decimal number has zero fractional part (is equal to an integer)
§Example
assert_eq!(dec!(5).is_integer(), true);
// Trailing zeros are also ignored
assert_eq!(dec!(5.0000).is_integer(), true);
// If there is a fractional part then it is not an integer
assert_eq!(dec!(5.1).is_integer(), false);Sourcepub fn serialize(&self) -> [u8; 16]
pub fn serialize(&self) -> [u8; 16]
Returns a serialized version of the decimal number. The resulting byte array will have the following representation:
- Bytes 1-4: flags
- Bytes 5-8: lo portion of
m - Bytes 9-12: mid portion of
m - Bytes 13-16: high portion of
m
Sourcepub fn is_negative(&self) -> bool
👎Deprecated since 0.6.3: please use is_sign_negative instead
pub fn is_negative(&self) -> bool
is_sign_negative insteadReturns true if the decimal is negative.
Sourcepub fn is_positive(&self) -> bool
👎Deprecated since 0.6.3: please use is_sign_positive instead
pub fn is_positive(&self) -> bool
is_sign_positive insteadReturns true if the decimal is positive.
Sourcepub fn is_sign_negative(&self) -> bool
pub fn is_sign_negative(&self) -> bool
Returns true if the sign bit of the decimal is negative.
§Example
assert_eq!(true, Decimal::new(-1, 0).is_sign_negative());
assert_eq!(false, Decimal::new(1, 0).is_sign_negative());Sourcepub fn is_sign_positive(&self) -> bool
pub fn is_sign_positive(&self) -> bool
Returns true if the sign bit of the decimal is positive.
§Example
assert_eq!(false, Decimal::new(-1, 0).is_sign_positive());
assert_eq!(true, Decimal::new(1, 0).is_sign_positive());Sourcepub fn trunc(&self) -> Decimal
pub fn trunc(&self) -> Decimal
Returns a new Decimal integral with no fractional portion.
This is a true truncation whereby no rounding is performed.
§Example
let pi = dec!(3.141);
assert_eq!(pi.trunc(), dec!(3));
// Negative numbers are similarly truncated without rounding
let neg = dec!(-1.98765);
assert_eq!(neg.trunc(), Decimal::NEGATIVE_ONE);Sourcepub fn trunc_with_scale(&self, scale: u32) -> Decimal
pub fn trunc_with_scale(&self, scale: u32) -> Decimal
Returns a new Decimal with the fractional portion delimited by scale.
This is a true truncation whereby no rounding is performed.
§Example
let pi = dec!(3.141592);
assert_eq!(pi.trunc_with_scale(2), dec!(3.14));
// Negative numbers are similarly truncated without rounding
let neg = dec!(-1.98765);
assert_eq!(neg.trunc_with_scale(1), dec!(-1.9));Sourcepub fn fract(&self) -> Decimal
pub fn fract(&self) -> Decimal
Returns a new Decimal representing the fractional portion of the number.
§Example
let pi = Decimal::new(3141, 3);
let fract = Decimal::new(141, 3);
// note that it returns a decimal
assert_eq!(pi.fract(), fract);Sourcepub fn abs(&self) -> Decimal
pub fn abs(&self) -> Decimal
Computes the absolute value of self.
§Example
let num = Decimal::new(-3141, 3);
assert_eq!(num.abs().to_string(), "3.141");Sourcepub fn floor(&self) -> Decimal
pub fn floor(&self) -> Decimal
Returns the largest integer less than or equal to a number.
§Example
let num = Decimal::new(3641, 3);
assert_eq!(num.floor().to_string(), "3");Sourcepub fn ceil(&self) -> Decimal
pub fn ceil(&self) -> Decimal
Returns the smallest integer greater than or equal to a number.
§Example
let num = Decimal::new(3141, 3);
assert_eq!(num.ceil().to_string(), "4");
let num = Decimal::new(3, 0);
assert_eq!(num.ceil().to_string(), "3");Sourcepub fn normalize(&self) -> Decimal
pub fn normalize(&self) -> Decimal
Strips any trailing zero’s from a Decimal and converts -0 to 0.
§Example
let number = Decimal::from_str("3.100")?;
assert_eq!(number.normalize().to_string(), "3.1");Sourcepub fn round(&self) -> Decimal
pub fn round(&self) -> Decimal
Returns a new Decimal number with no fractional portion (i.e. an integer).
Rounding currently follows “Bankers Rounding” rules. e.g. 6.5 -> 6, 7.5 -> 8
§Example
// Demonstrating bankers rounding...
let number_down = Decimal::new(65, 1);
let number_up = Decimal::new(75, 1);
assert_eq!(number_down.round().to_string(), "6");
assert_eq!(number_up.round().to_string(), "8");Sourcepub fn round_dp_with_strategy(
&self,
dp: u32,
strategy: RoundingStrategy,
) -> Decimal
pub fn round_dp_with_strategy( &self, dp: u32, strategy: RoundingStrategy, ) -> Decimal
Returns a new Decimal number with the specified number of decimal points for fractional
portion.
Rounding is performed using the provided RoundingStrategy
§Arguments
dp: the number of decimal points to round to.strategy: theRoundingStrategyto use.
§Example
let tax = dec!(3.4395);
assert_eq!(tax.round_dp_with_strategy(2, RoundingStrategy::MidpointAwayFromZero).to_string(), "3.44");Sourcepub fn round_dp(&self, dp: u32) -> Decimal
pub fn round_dp(&self, dp: u32) -> Decimal
Returns a new Decimal number with the specified number of decimal points for fractional portion.
Rounding currently follows “Bankers Rounding” rules. e.g. 6.5 -> 6, 7.5 -> 8
§Arguments
dp: the number of decimal points to round to.
§Example
let pi = dec!(3.1415926535897932384626433832);
assert_eq!(pi.round_dp(2).to_string(), "3.14");Sourcepub fn round_sf(&self, digits: u32) -> Option<Decimal>
pub fn round_sf(&self, digits: u32) -> Option<Decimal>
Returns Some(Decimal) number rounded to the specified number of significant digits. If
the resulting number is unable to be represented by the Decimal number then None will
be returned.
When the number of significant figures of the Decimal being rounded is greater than the requested
number of significant digits then rounding will be performed using MidpointNearestEven strategy.
§Arguments
digits: the number of significant digits to round to.
§Remarks
A significant figure is determined using the following rules:
- Non-zero digits are always significant.
- Zeros between non-zero digits are always significant.
- Leading zeros are never significant.
- Trailing zeros are only significant if the number contains a decimal point.
§Example
let value = dec!(305.459);
assert_eq!(value.round_sf(0), Some(dec!(0)));
assert_eq!(value.round_sf(1), Some(dec!(300)));
assert_eq!(value.round_sf(2), Some(dec!(310)));
assert_eq!(value.round_sf(3), Some(dec!(305)));
assert_eq!(value.round_sf(4), Some(dec!(305.5)));
assert_eq!(value.round_sf(5), Some(dec!(305.46)));
assert_eq!(value.round_sf(6), Some(dec!(305.459)));
assert_eq!(value.round_sf(7), Some(dec!(305.4590)));
assert_eq!(Decimal::MAX.round_sf(1), None);
let value = dec!(0.012301);
assert_eq!(value.round_sf(3), Some(dec!(0.0123)));Sourcepub fn round_sf_with_strategy(
&self,
digits: u32,
strategy: RoundingStrategy,
) -> Option<Decimal>
pub fn round_sf_with_strategy( &self, digits: u32, strategy: RoundingStrategy, ) -> Option<Decimal>
Returns Some(Decimal) number rounded to the specified number of significant digits. If
the resulting number is unable to be represented by the Decimal number then None will
be returned.
When the number of significant figures of the Decimal being rounded is greater than the requested
number of significant digits then rounding will be performed using the provided RoundingStrategy.
§Arguments
digits: the number of significant digits to round to.strategy: if required, the rounding strategy to use.
§Remarks
A significant figure is determined using the following rules:
- Non-zero digits are always significant.
- Zeros between non-zero digits are always significant.
- Leading zeros are never significant.
- Trailing zeros are only significant if the number contains a decimal point.
§Example
let value = dec!(305.459);
assert_eq!(value.round_sf_with_strategy(0, RoundingStrategy::ToZero), Some(dec!(0)));
assert_eq!(value.round_sf_with_strategy(1, RoundingStrategy::ToZero), Some(dec!(300)));
assert_eq!(value.round_sf_with_strategy(2, RoundingStrategy::ToZero), Some(dec!(300)));
assert_eq!(value.round_sf_with_strategy(3, RoundingStrategy::ToZero), Some(dec!(305)));
assert_eq!(value.round_sf_with_strategy(4, RoundingStrategy::ToZero), Some(dec!(305.4)));
assert_eq!(value.round_sf_with_strategy(5, RoundingStrategy::ToZero), Some(dec!(305.45)));
assert_eq!(value.round_sf_with_strategy(6, RoundingStrategy::ToZero), Some(dec!(305.459)));
assert_eq!(value.round_sf_with_strategy(7, RoundingStrategy::ToZero), Some(dec!(305.4590)));
assert_eq!(Decimal::MAX.round_sf_with_strategy(1, RoundingStrategy::ToZero), Some(dec!(70000000000000000000000000000)));
let value = dec!(0.012301);
assert_eq!(value.round_sf_with_strategy(3, RoundingStrategy::AwayFromZero), Some(dec!(0.0124)));Sourcepub fn unpack(&self) -> UnpackedDecimal
pub fn unpack(&self) -> UnpackedDecimal
Convert Decimal to an internal representation of the underlying struct. This is useful
for debugging the internal state of the object.
§Important Disclaimer
This is primarily intended for library maintainers. The internal representation of a
Decimal is considered “unstable” for public use.
§Example
let pi = dec!(3.1415926535897932384626433832);
assert_eq!(format!("{:?}", pi), "3.1415926535897932384626433832");
assert_eq!(format!("{:?}", pi.unpack()), "UnpackedDecimal { \
negative: false, scale: 28, hi: 1703060790, mid: 185874565, lo: 1102470952 \
}");Trait Implementations§
Source§impl Clone for NonZeroDecimal
impl Clone for NonZeroDecimal
Source§fn clone(&self) -> NonZeroDecimal
fn clone(&self) -> NonZeroDecimal
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read more