1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
use std::{
cell::RefCell,
collections::{BTreeMap, BTreeSet, VecDeque},
rc::Rc,
};
use miden_assembly::Library as CompiledLibrary;
use miden_core::{Program, StackInputs, Word};
use miden_processor::{
AdviceInputs, ContextId, ExecutionError, Felt, MastForest, MemAdviceProvider, Process,
ProcessState, RowIndex, StackOutputs, VmState, VmStateIterator,
};
use midenc_codegen_masm::{NativePtr, Package};
use midenc_hir::Type;
use midenc_session::{
diagnostics::{IntoDiagnostic, Report},
Session,
};
use super::{DebugExecutor, DebuggerHost, ExecutionTrace, TraceEvent};
use crate::{debug::CallStack, felt::PopFromStack, TestFelt};
/// The [Executor] is responsible for executing a program with the Miden VM.
///
/// It is used by either converting it into a [DebugExecutor], and using that to
/// manage execution step-by-step, such as is done by the debugger; or by running
/// the program to completion and obtaining an [ExecutionTrace], which can be used
/// to introspect the final program state.
pub struct Executor {
stack: StackInputs,
advice: AdviceInputs,
libraries: Vec<MastForest>,
}
impl Executor {
/// Construct an executor with the given arguments on the operand stack
pub fn new(args: Vec<Felt>) -> Self {
Self {
stack: StackInputs::new(args).expect("invalid stack inputs"),
advice: AdviceInputs::default(),
libraries: Default::default(),
}
}
pub fn for_package(
package: &Package,
args: Vec<Felt>,
session: &Session,
) -> Result<Self, Report> {
use midenc_hir::formatter::DisplayHex;
log::debug!(
"creating executor for package '{}' (digest={})",
package.name,
DisplayHex::new(&package.digest.as_bytes())
);
let mut exec = Self::new(args);
for link_library in package.manifest.link_libraries.iter() {
log::debug!(
"loading link library from package manifest: {} (kind = {}, from = {:#?})",
link_library.name.as_ref(),
link_library.kind,
link_library.path.as_ref().map(|p| p.display())
);
let library = link_library.load(session)?;
log::debug!("library loaded succesfully");
exec.with_library(&library);
}
for rodata in package.rodata.iter() {
log::debug!(
"adding rodata segment for offset {} (size {}) to advice map: {}",
rodata.start.as_ptr(),
rodata.size_in_bytes(),
DisplayHex::new(&rodata.digest.as_bytes())
);
exec.advice
.extend_map([(rodata.digest, rodata.to_elements().map_err(Report::msg)?)]);
}
log::debug!("executor created");
Ok(exec)
}
/// Set the contents of memory for the shadow stack frame of the entrypoint
pub fn with_advice_inputs(&mut self, advice: AdviceInputs) -> &mut Self {
self.advice.extend(advice);
self
}
/// Add a [CompiledLibrary] to the execution context
pub fn with_library(&mut self, lib: &CompiledLibrary) -> &mut Self {
self.libraries.push(lib.mast_forest().clone());
self
}
/// Convert this [Executor] into a [DebugExecutor], which captures much more information
/// about the program being executed, and must be stepped manually.
pub fn into_debug(mut self, program: &Program, session: &Session) -> DebugExecutor {
log::debug!("creating debug executor");
let advice_provider = MemAdviceProvider::from(self.advice);
let mut host = DebuggerHost::new(advice_provider);
for lib in core::mem::take(&mut self.libraries) {
host.load_mast_forest(lib);
}
let trace_events: Rc<RefCell<BTreeMap<RowIndex, TraceEvent>>> = Rc::new(Default::default());
let frame_start_events = Rc::clone(&trace_events);
host.register_trace_handler(TraceEvent::FrameStart, move |clk, event| {
frame_start_events.borrow_mut().insert(clk, event);
});
let frame_end_events = Rc::clone(&trace_events);
host.register_trace_handler(TraceEvent::FrameEnd, move |clk, event| {
frame_end_events.borrow_mut().insert(clk, event);
});
let assertion_events = Rc::clone(&trace_events);
host.register_assert_failed_tracer(move |clk, event| {
assertion_events.borrow_mut().insert(clk, event);
});
let mut process = Process::new_debug(program.kernel().clone(), self.stack, host);
let root_context = process.ctx();
let result = process.execute(program);
let mut iter = VmStateIterator::new(process, result.clone());
let mut callstack = CallStack::new(trace_events);
DebugExecutor {
iter,
result,
contexts: Default::default(),
root_context,
current_context: root_context,
callstack,
recent: VecDeque::with_capacity(5),
last: None,
cycle: 0,
stopped: false,
}
}
/// Execute the given program until termination, producing a trace
pub fn capture_trace(mut self, program: &Program, session: &Session) -> ExecutionTrace {
let mut executor = self.into_debug(program, session);
while let Some(step) = executor.next() {
if step.is_err() {
return executor.into_execution_trace();
}
}
executor.into_execution_trace()
}
/// Execute the given program, producing a trace
#[track_caller]
pub fn execute(mut self, program: &Program, session: &Session) -> ExecutionTrace {
let mut executor = self.into_debug(program, session);
while let Some(step) = executor.next() {
if let Err(err) = step {
render_execution_error(err, &executor, session);
}
/*
if let Some(op) = state.op {
match op {
miden_core::Operation::MLoad => {
let load_addr = last_state
.as_ref()
.map(|state| state.stack[0].as_int())
.unwrap();
let loaded = match state
.memory
.binary_search_by_key(&load_addr, |&(addr, _)| addr)
{
Ok(index) => state.memory[index].1[0].as_int(),
Err(_) => 0,
};
//dbg!(load_addr, loaded, format!("{loaded:08x}"));
}
miden_core::Operation::MLoadW => {
let load_addr = last_state
.as_ref()
.map(|state| state.stack[0].as_int())
.unwrap();
let loaded = match state
.memory
.binary_search_by_key(&load_addr, |&(addr, _)| addr)
{
Ok(index) => {
let word = state.memory[index].1;
[
word[0].as_int(),
word[1].as_int(),
word[2].as_int(),
word[3].as_int(),
]
}
Err(_) => [0; 4],
};
let loaded_bytes = {
let word = loaded;
let a = (word[0] as u32).to_be_bytes();
let b = (word[1] as u32).to_be_bytes();
let c = (word[2] as u32).to_be_bytes();
let d = (word[3] as u32).to_be_bytes();
let bytes = [
a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3], c[0], c[1],
c[2], c[3], d[0], d[1], d[2], d[3],
];
u128::from_be_bytes(bytes)
};
//dbg!(load_addr, loaded, format!("{loaded_bytes:032x}"));
}
miden_core::Operation::MStore => {
let store_addr = last_state
.as_ref()
.map(|state| state.stack[0].as_int())
.unwrap();
let stored = match state
.memory
.binary_search_by_key(&store_addr, |&(addr, _)| addr)
{
Ok(index) => state.memory[index].1[0].as_int(),
Err(_) => 0,
};
//dbg!(store_addr, stored, format!("{stored:08x}"));
}
miden_core::Operation::MStoreW => {
let store_addr = last_state
.as_ref()
.map(|state| state.stack[0].as_int())
.unwrap();
let stored = {
let memory = state
.memory
.iter()
.find_map(|(addr, word)| {
if addr == &store_addr {
Some(word)
} else {
None
}
})
.unwrap();
let a = memory[0].as_int();
let b = memory[1].as_int();
let c = memory[2].as_int();
let d = memory[3].as_int();
[a, b, c, d]
};
let stored_bytes = {
let word = stored;
let a = (word[0] as u32).to_be_bytes();
let b = (word[1] as u32).to_be_bytes();
let c = (word[2] as u32).to_be_bytes();
let d = (word[3] as u32).to_be_bytes();
let bytes = [
a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3], c[0], c[1],
c[2], c[3], d[0], d[1], d[2], d[3],
];
u128::from_be_bytes(bytes)
};
//dbg!(store_addr, stored, format!("{stored_bytes:032x}"));
}
_ => (),
}
}
*/
}
executor.into_execution_trace()
}
/// Execute a program, parsing the operand stack outputs as a value of type `T`
pub fn execute_into<T>(self, program: &Program, session: &Session) -> T
where
T: PopFromStack + PartialEq,
{
let out = self.execute(program, session);
out.parse_result().expect("invalid result")
}
}
#[track_caller]
fn render_execution_error(
err: ExecutionError,
execution_state: &DebugExecutor,
session: &Session,
) -> ! {
use midenc_hir::diagnostics::{miette::miette, reporting::PrintDiagnostic, LabeledSpan};
let stacktrace = execution_state.callstack.stacktrace(&execution_state.recent, session);
eprintln!("{stacktrace}");
if let Some(last_state) = execution_state.last.as_ref() {
let stack = last_state.stack.iter().map(|elem| elem.as_int());
let stack = midenc_hir::DisplayValues::new(stack);
let fmp = last_state.fmp.as_int();
eprintln!(
"\nLast Known State (at most recent instruction which succeeded):
| Frame Pointer: {fmp} (starts at 2^30)
| Operand Stack: [{stack}]
"
);
let mut labels = vec![];
if let Some(span) = stacktrace
.current_frame()
.and_then(|frame| frame.location.as_ref())
.map(|loc| loc.span)
{
labels.push(LabeledSpan::new_with_span(
None,
span.start().to_usize()..span.end().to_usize(),
));
}
let report = miette!(
labels = labels,
"program execution failed at step {step} (cycle {cycle}): {err}",
step = execution_state.cycle,
cycle = last_state.clk,
);
let report = match stacktrace
.current_frame()
.and_then(|frame| frame.location.as_ref())
.map(|loc| loc.source_file.clone())
{
Some(source) => report.with_source_code(source),
None => report,
};
panic!("{}", PrintDiagnostic::new(report));
} else {
panic!("program execution failed at step {step}: {err}", step = execution_state.cycle);
}
}