Skip to main content

BinomialExtensionField

Struct BinomialExtensionField 

Source
pub struct BinomialExtensionField<F, const D: usize, A = F> { /* private fields */ }

Implementations§

Source§

impl<F, A, const D: usize> BinomialExtensionField<F, D, A>

Source

pub const fn new(value: [A; D]) -> BinomialExtensionField<F, D, A>

Create an extension field element from an array of base elements.

Any array is accepted. No reduction is required since base elements are already valid field elements.

Source§

impl<F, const D: usize> BinomialExtensionField<F, D>
where F: Copy,

Source

pub const fn new_array<const N: usize>( input: [[F; D]; N], ) -> [BinomialExtensionField<F, D>; N]

Convert a [[F; D]; N] array to an array of extension field elements.

Const version of input.map(BinomialExtensionField::new).

§Panics

Panics if N == 0.

Source§

impl<R> BinomialExtensionField<R, 2>

Convenience methods for complex extensions

Source

pub const fn new_complex(real: R, imag: R) -> BinomialExtensionField<R, 2>

Source

pub const fn new_real(real: R) -> BinomialExtensionField<R, 2>

Source

pub const fn new_imag(imag: R) -> BinomialExtensionField<R, 2>

Source

pub fn real(&self) -> R

Source

pub fn imag(&self) -> R

Source

pub fn conjugate(&self) -> BinomialExtensionField<R, 2>

Source

pub fn norm(&self) -> R

Source

pub fn to_array(&self) -> [R; 2]

Source

pub fn rotate<Ext>( &self, rhs: &BinomialExtensionField<Ext, 2>, ) -> BinomialExtensionField<Ext, 2>
where Ext: Algebra<R>,

Trait Implementations§

Source§

impl<F, A, const D: usize> Add<A> for BinomialExtensionField<F, D, A>
where F: BinomiallyExtendable<D>, A: Algebra<F>,

Source§

type Output = BinomialExtensionField<F, D, A>

The resulting type after applying the + operator.
Source§

fn add(self, rhs: A) -> BinomialExtensionField<F, D, A>

Performs the + operation. Read more
Source§

impl<F, A, const D: usize> Add for BinomialExtensionField<F, D, A>

Source§

type Output = BinomialExtensionField<F, D, A>

The resulting type after applying the + operator.
Source§

fn add( self, rhs: BinomialExtensionField<F, D, A>, ) -> BinomialExtensionField<F, D, A>

Performs the + operation. Read more
Source§

impl<F, A, const D: usize> AddAssign<A> for BinomialExtensionField<F, D, A>
where F: BinomiallyExtendable<D>, A: Algebra<F>,

Source§

fn add_assign(&mut self, rhs: A)

Performs the += operation. Read more
Source§

impl<F, A, const D: usize> AddAssign for BinomialExtensionField<F, D, A>
where F: BinomiallyExtendable<D>, A: Algebra<F>,

Source§

fn add_assign(&mut self, rhs: BinomialExtensionField<F, D, A>)

Performs the += operation. Read more
Source§

impl<F, A, const D: usize> BasedVectorSpace<A> for BinomialExtensionField<F, D, A>
where F: BinomiallyExtendable<D>, A: Algebra<F>,

Source§

const DIMENSION: usize = D

The dimension of the vector space, i.e. the number of elements in its basis.
Source§

fn as_basis_coefficients_slice(&self) -> &[A]

Fixes a basis for the algebra A and uses this to map an element of A to a slice of DIMENSION F elements. Read more
Source§

fn from_basis_coefficients_fn<Fn>(f: Fn) -> BinomialExtensionField<F, D, A>
where Fn: FnMut(usize) -> A,

Fixes a basis for the algebra A and uses this to map DIMENSION F elements to an element of A. Similar to core:array::from_fn, the DIMENSION F elements are given by Fn(0), ..., Fn(DIMENSION - 1) called in that order. Read more
Source§

fn from_basis_coefficients_iter<I>( iter: I, ) -> Option<BinomialExtensionField<F, D, A>>
where I: ExactSizeIterator<Item = A>,

Fixes a basis for the algebra A and uses this to map DIMENSION F elements to an element of A. Read more
Source§

fn flatten_to_base(vec: Vec<BinomialExtensionField<F, D, A>>) -> Vec<A>

Convert from a vector of Self to a vector of F by flattening the basis coefficients. Read more
Source§

fn reconstitute_from_base(vec: Vec<A>) -> Vec<BinomialExtensionField<F, D, A>>

Convert from a vector of F to a vector of Self by combining the basis coefficients. Read more
Source§

fn from_basis_coefficients_slice(slice: &[F]) -> Option<Self>

Fixes a basis for the algebra A and uses this to map DIMENSION F elements to an element of A. Read more
Source§

fn ith_basis_element(i: usize) -> Option<Self>

Given a basis for the Algebra A, return the i’th basis element. Read more
Source§

impl<F, const D: usize> BinomiallyExtendable<D> for BinomialExtensionField<F, 2>

Source§

const W: BinomialExtensionField<F, 2>

The constant coefficient W in the binomial X^D - W.
Source§

const DTH_ROOT: BinomialExtensionField<F, 2>

A D-th root of unity derived from W. Read more
Source§

const EXT_GENERATOR: [BinomialExtensionField<F, 2>; D] = F::EXT_GENERATOR

A generator for the extension field, expressed as a degree-D polynomial. Read more
Source§

impl<F, const D: usize> BinomiallyExtendableAlgebra<BinomialExtensionField<F, 2>, D> for BinomialExtensionField<F, 2>

Source§

fn binomial_mul(a: &[Self; D], b: &[Self; D], res: &mut [Self; D], w: F)

Multiplication in the algebra extension ring A<X> / (X^D - W). Read more
Source§

fn binomial_add(a: &[Self; D], b: &[Self; D]) -> [Self; D]

Addition of elements in the algebra extension ring A<X> / (X^D - W). Read more
Source§

fn binomial_sub(a: &[Self; D], b: &[Self; D]) -> [Self; D]

Subtraction of elements in the algebra extension ring A<X> / (X^D - W). Read more
Source§

fn binomial_base_mul(lhs: [Self; D], rhs: Self) -> [Self; D]

Source§

impl<F, const D: usize, A> Clone for BinomialExtensionField<F, D, A>
where F: Clone, A: Clone,

Source§

fn clone(&self) -> BinomialExtensionField<F, D, A>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<F, const D: usize, A> Debug for BinomialExtensionField<F, D, A>
where F: Debug, A: Debug,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<F, A, const D: usize> Default for BinomialExtensionField<F, D, A>
where F: Field, A: Algebra<F>,

Source§

fn default() -> BinomialExtensionField<F, D, A>

Returns the “default value” for a type. Read more
Source§

impl<'de, F, const D: usize, A> Deserialize<'de> for BinomialExtensionField<F, D, A>
where A: Deserialize<'de>,

Source§

fn deserialize<__D>( __deserializer: __D, ) -> Result<BinomialExtensionField<F, D, A>, <__D as Deserializer<'de>>::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl<F, const D: usize> Display for BinomialExtensionField<F, D>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<F, const D: usize> Div for BinomialExtensionField<F, D>

Source§

type Output = BinomialExtensionField<F, D>

The resulting type after applying the / operator.
Source§

fn div( self, rhs: BinomialExtensionField<F, D>, ) -> <BinomialExtensionField<F, D> as Div>::Output

Performs the / operation. Read more
Source§

impl<F, const D: usize> DivAssign for BinomialExtensionField<F, D>

Source§

fn div_assign(&mut self, rhs: BinomialExtensionField<F, D>)

Performs the /= operation. Read more
Source§

impl<F, const D: usize> ExtensionField<F> for BinomialExtensionField<F, D>

Source§

type ExtensionPacking = PackedBinomialExtensionField<F, <F as Field>::Packing, D>

Source§

fn is_in_basefield(&self) -> bool

Determine if the given element lies in the base field.
Source§

fn as_base(&self) -> Option<F>

If the element lies in the base field project it down. Otherwise return None.
Source§

impl<F, const D: usize> Field for BinomialExtensionField<F, D>

Source§

const GENERATOR: BinomialExtensionField<F, D>

A generator of this field’s multiplicative group.
Source§

type Packing = BinomialExtensionField<F, D>

Source§

fn try_inverse(&self) -> Option<BinomialExtensionField<F, D>>

The multiplicative inverse of this field element, if it exists. Read more
Source§

fn add_slices( slice_1: &mut [BinomialExtensionField<F, D>], slice_2: &[BinomialExtensionField<F, D>], )

Add two slices of field elements together, returning the result in the first slice. Read more
Source§

fn order() -> BigUint

The number of elements in the field. Read more
Source§

fn is_zero(&self) -> bool

Check if the given field element is equal to the unique additive identity (ZERO).
Source§

fn is_one(&self) -> bool

Check if the given field element is equal to the unique multiplicative identity (ONE).
Source§

fn inverse(&self) -> Self

The multiplicative inverse of this field element. Read more
Source§

fn bits() -> usize

The number of bits required to define an element of this field. Read more
Source§

impl<F, A, const D: usize> From<[A; D]> for BinomialExtensionField<F, D, A>
where F: Field, A: Algebra<F>,

Source§

fn from(x: [A; D]) -> BinomialExtensionField<F, D, A>

Converts to this type from the input type.
Source§

impl<F, A, const D: usize> From<A> for BinomialExtensionField<F, D, A>
where F: Field, A: Algebra<F>,

Source§

fn from(x: A) -> BinomialExtensionField<F, D, A>

Converts to this type from the input type.
Source§

impl<F, const D: usize> HasFrobenius<F> for BinomialExtensionField<F, D>

Source§

fn frobenius(&self) -> BinomialExtensionField<F, D>

FrobeniusField automorphisms: x -> x^n, where n is the order of BaseField.

Source§

fn repeated_frobenius(&self, count: usize) -> BinomialExtensionField<F, D>

Repeated Frobenius automorphisms: x -> x^(n^count).

Follows precomputation suggestion in Section 11.3.3 of the Handbook of Elliptic and Hyperelliptic Curve Cryptography.

Source§

fn pseudo_inv(&self) -> BinomialExtensionField<F, D>

Compute the pseudo inverse of a given element making use of the Frobenius automorphism.

Returns 0 if self == 0, and 1/self otherwise.

Algorithm 11.3.4 in Handbook of Elliptic and Hyperelliptic Curve Cryptography.

Source§

fn galois_orbit(self) -> Vec<Self>

Returns the full Galois orbit of the element under Frobenius. Read more
Source§

impl<F, const D: usize> HasTwoAdicBinomialExtension<D> for BinomialExtensionField<F, 2>

Source§

const EXT_TWO_ADICITY: usize = F::COMPLEX_EXT_TWO_ADICITY

Two-adicity of the multiplicative group of the extension field. Read more
Source§

fn ext_two_adic_generator(bits: usize) -> [BinomialExtensionField<F, 2>; D]

Returns a two-adic generator for the extension field. Read more
Source§

impl<F, const D: usize, A> Hash for BinomialExtensionField<F, D, A>
where F: Hash, A: Hash,

Source§

fn hash<__H>(&self, state: &mut __H)
where __H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
Source§

impl<F, A, const D: usize> Mul<A> for BinomialExtensionField<F, D, A>

Source§

type Output = BinomialExtensionField<F, D, A>

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: A) -> BinomialExtensionField<F, D, A>

Performs the * operation. Read more
Source§

impl<F, A, const D: usize> Mul for BinomialExtensionField<F, D, A>

Source§

type Output = BinomialExtensionField<F, D, A>

The resulting type after applying the * operator.
Source§

fn mul( self, rhs: BinomialExtensionField<F, D, A>, ) -> BinomialExtensionField<F, D, A>

Performs the * operation. Read more
Source§

impl<F, A, const D: usize> MulAssign<A> for BinomialExtensionField<F, D, A>

Source§

fn mul_assign(&mut self, rhs: A)

Performs the *= operation. Read more
Source§

impl<F, A, const D: usize> MulAssign for BinomialExtensionField<F, D, A>

Source§

fn mul_assign(&mut self, rhs: BinomialExtensionField<F, D, A>)

Performs the *= operation. Read more
Source§

impl<F, A, const D: usize> Neg for BinomialExtensionField<F, D, A>
where F: BinomiallyExtendable<D>, A: Algebra<F>,

Source§

type Output = BinomialExtensionField<F, D, A>

The resulting type after applying the - operator.
Source§

fn neg(self) -> BinomialExtensionField<F, D, A>

Performs the unary - operation. Read more
Source§

impl<F, const D: usize, A> Ord for BinomialExtensionField<F, D, A>
where F: Ord, A: Ord,

Source§

fn cmp(&self, other: &BinomialExtensionField<F, D, A>) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · Source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · Source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · Source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized,

Restrict a value to a certain interval. Read more
Source§

impl<F, const D: usize, A> PartialEq for BinomialExtensionField<F, D, A>
where F: PartialEq, A: PartialEq,

Source§

fn eq(&self, other: &BinomialExtensionField<F, D, A>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl<F, const D: usize, A> PartialOrd for BinomialExtensionField<F, D, A>
where F: PartialOrd, A: PartialOrd,

Source§

fn partial_cmp( &self, other: &BinomialExtensionField<F, D, A>, ) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

impl<F, A, const D: usize> PrimeCharacteristicRing for BinomialExtensionField<F, D, A>

Source§

const ZERO: BinomialExtensionField<F, D, A>

The additive identity of the ring. Read more
Source§

const ONE: BinomialExtensionField<F, D, A>

The multiplicative identity of the ring. Read more
Source§

const TWO: BinomialExtensionField<F, D, A>

The element in the ring given by ONE + ONE. Read more
Source§

const NEG_ONE: BinomialExtensionField<F, D, A>

The element in the ring given by -ONE. Read more
Source§

type PrimeSubfield = <A as PrimeCharacteristicRing>::PrimeSubfield

The field ℤ/p where the characteristic of this ring is p.
Source§

fn from_prime_subfield( f: <BinomialExtensionField<F, D, A> as PrimeCharacteristicRing>::PrimeSubfield, ) -> BinomialExtensionField<F, D, A>

Embed an element of the prime field ℤ/p into the ring R. Read more
Source§

fn halve(&self) -> BinomialExtensionField<F, D, A>

The elementary function halve(a) = a/2. Read more
Source§

fn square(&self) -> BinomialExtensionField<F, D, A>

The elementary function square(a) = a^2. Read more
Source§

fn mul_2exp_u64(&self, exp: u64) -> BinomialExtensionField<F, D, A>

The elementary function mul_2exp_u64(a, exp) = a * 2^{exp}. Read more
Source§

fn div_2exp_u64(&self, exp: u64) -> BinomialExtensionField<F, D, A>

Divide by a given power of two. div_2exp_u64(a, exp) = a/2^exp Read more
Source§

fn zero_vec(len: usize) -> Vec<BinomialExtensionField<F, D, A>>

Allocates a vector of zero elements of length len. Many operating systems zero pages before assigning them to a userspace process. In that case, our process should not need to write zeros, which would be redundant. However, the compiler may not always recognize this. Read more
Source§

fn from_bool(b: bool) -> Self

Return Self::ONE if b is true and Self::ZERO if b is false.
Source§

fn from_u8(int: u8) -> Self

Given an integer r, return the sum of r copies of ONE: Read more
Source§

fn from_u16(int: u16) -> Self

Given an integer r, return the sum of r copies of ONE: Read more
Source§

fn from_u32(int: u32) -> Self

Given an integer r, return the sum of r copies of ONE: Read more
Source§

fn from_u64(int: u64) -> Self

Given an integer r, return the sum of r copies of ONE: Read more
Source§

fn from_u128(int: u128) -> Self

Given an integer r, return the sum of r copies of ONE: Read more
Source§

fn from_usize(int: usize) -> Self

Given an integer r, return the sum of r copies of ONE: Read more
Source§

fn from_i8(int: i8) -> Self

Given an integer r, return the sum of r copies of ONE: Read more
Source§

fn from_i16(int: i16) -> Self

Given an integer r, return the sum of r copies of ONE: Read more
Source§

fn from_i32(int: i32) -> Self

Given an integer r, return the sum of r copies of ONE: Read more
Source§

fn from_i64(int: i64) -> Self

Given an integer r, return the sum of r copies of ONE: Read more
Source§

fn from_i128(int: i128) -> Self

Given an integer r, return the sum of r copies of ONE: Read more
Source§

fn from_isize(int: isize) -> Self

Given an integer r, return the sum of r copies of ONE: Read more
Source§

fn double(&self) -> Self

The elementary function double(a) = 2*a. Read more
Source§

fn cube(&self) -> Self

The elementary function cube(a) = a^3. Read more
Source§

fn xor(&self, y: &Self) -> Self

Computes the arithmetic generalization of boolean xor. Read more
Source§

fn xor3(&self, y: &Self, z: &Self) -> Self

Computes the arithmetic generalization of a triple xor. Read more
Source§

fn andn(&self, y: &Self) -> Self

Computes the arithmetic generalization of andnot. Read more
Source§

fn bool_check(&self) -> Self

The vanishing polynomial for boolean values: x * (x - 1). Read more
Source§

fn exp_u64(&self, power: u64) -> Self

Exponentiation by a u64 power. Read more
Source§

fn exp_const_u64<const POWER: u64>(&self) -> Self

Exponentiation by a small constant power. Read more
Source§

fn exp_power_of_2(&self, power_log: usize) -> Self

The elementary function exp_power_of_2(a, power_log) = a^{2^power_log}. Read more
Source§

fn powers(&self) -> Powers<Self>

Construct an iterator which returns powers of self: self^0, self^1, self^2, ....
Source§

fn shifted_powers(&self, start: Self) -> Powers<Self>

Construct an iterator which returns powers of self shifted by start: start, start*self^1, start*self^2, ....
Source§

fn dot_product<const N: usize>(u: &[Self; N], v: &[Self; N]) -> Self

Compute the dot product of two vectors.
Source§

fn sum_array<const N: usize>(input: &[Self]) -> Self

Compute the sum of a slice of elements whose length is a compile time constant. Read more
Source§

impl<F, A, const D: usize> Product for BinomialExtensionField<F, D, A>

Source§

fn product<I>(iter: I) -> BinomialExtensionField<F, D, A>
where I: Iterator<Item = BinomialExtensionField<F, D, A>>,

Takes an iterator and generates Self from the elements by multiplying the items.
Source§

impl<F, const D: usize> RawDataSerializable for BinomialExtensionField<F, D>

Source§

const NUM_BYTES: usize

The number of bytes which this field element occupies in memory. Must be equal to the length of self.into_bytes().
Source§

fn into_bytes(self) -> impl IntoIterator<Item = u8>

Convert a field element into a collection of bytes.
Source§

fn into_byte_stream( input: impl IntoIterator<Item = BinomialExtensionField<F, D>>, ) -> impl IntoIterator<Item = u8>

Convert an iterator of field elements into an iterator of bytes.
Source§

fn into_u32_stream( input: impl IntoIterator<Item = BinomialExtensionField<F, D>>, ) -> impl IntoIterator<Item = u32>

Convert an iterator of field elements into an iterator of u32s. Read more
Source§

fn into_u64_stream( input: impl IntoIterator<Item = BinomialExtensionField<F, D>>, ) -> impl IntoIterator<Item = u64>

Convert an iterator of field elements into an iterator of u64s. Read more
Source§

fn into_parallel_byte_streams<const N: usize>( input: impl IntoIterator<Item = [BinomialExtensionField<F, D>; N]>, ) -> impl IntoIterator<Item = [u8; N]>

Convert an iterator of field element arrays into an iterator of byte arrays. Read more
Source§

fn into_parallel_u32_streams<const N: usize>( input: impl IntoIterator<Item = [BinomialExtensionField<F, D>; N]>, ) -> impl IntoIterator<Item = [u32; N]>

Convert an iterator of field element arrays into an iterator of u32 arrays. Read more
Source§

fn into_parallel_u64_streams<const N: usize>( input: impl IntoIterator<Item = [BinomialExtensionField<F, D>; N]>, ) -> impl IntoIterator<Item = [u64; N]>

Convert an iterator of field element arrays into an iterator of u64 arrays. Read more
Source§

impl<F, const D: usize, A> Serialize for BinomialExtensionField<F, D, A>
where A: Serialize,

Source§

fn serialize<__S>( &self, __serializer: __S, ) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
Source§

impl<F, A, const D: usize> Sub<A> for BinomialExtensionField<F, D, A>
where F: BinomiallyExtendable<D>, A: Algebra<F>,

Source§

type Output = BinomialExtensionField<F, D, A>

The resulting type after applying the - operator.
Source§

fn sub(self, rhs: A) -> BinomialExtensionField<F, D, A>

Performs the - operation. Read more
Source§

impl<F, A, const D: usize> Sub for BinomialExtensionField<F, D, A>

Source§

type Output = BinomialExtensionField<F, D, A>

The resulting type after applying the - operator.
Source§

fn sub( self, rhs: BinomialExtensionField<F, D, A>, ) -> BinomialExtensionField<F, D, A>

Performs the - operation. Read more
Source§

impl<F, A, const D: usize> SubAssign<A> for BinomialExtensionField<F, D, A>
where F: BinomiallyExtendable<D>, A: Algebra<F>,

Source§

fn sub_assign(&mut self, rhs: A)

Performs the -= operation. Read more
Source§

impl<F, A, const D: usize> SubAssign for BinomialExtensionField<F, D, A>
where F: BinomiallyExtendable<D>, A: Algebra<F>,

Source§

fn sub_assign(&mut self, rhs: BinomialExtensionField<F, D, A>)

Performs the -= operation. Read more
Source§

impl<F, A, const D: usize> Sum for BinomialExtensionField<F, D, A>

Source§

fn sum<I>(iter: I) -> BinomialExtensionField<F, D, A>
where I: Iterator<Item = BinomialExtensionField<F, D, A>>,

Takes an iterator and generates Self from the elements by “summing up” the items.
Source§

impl<F, const D: usize> TwoAdicField for BinomialExtensionField<F, D>

Source§

const TWO_ADICITY: usize = F::EXT_TWO_ADICITY

The number of factors of two in this field’s multiplicative group.
Source§

fn two_adic_generator(bits: usize) -> BinomialExtensionField<F, D>

Returns a generator of the multiplicative group of order 2^bits. Assumes bits <= TWO_ADICITY, otherwise the result is undefined.
Source§

impl<F, const D: usize> Algebra<F> for BinomialExtensionField<F, D>

Source§

impl<F, const D: usize, A> Copy for BinomialExtensionField<F, D, A>
where F: Copy, A: Copy,

Source§

impl<F, const D: usize, A> Eq for BinomialExtensionField<F, D, A>
where F: Eq, A: Eq,

Source§

impl<F, const D: usize> Packable for BinomialExtensionField<F, D>

Source§

impl<F, const D: usize, A> StructuralPartialEq for BinomialExtensionField<F, D, A>

Auto Trait Implementations§

§

impl<F, const D: usize, A> Freeze for BinomialExtensionField<F, D, A>
where A: Freeze,

§

impl<F, const D: usize, A> RefUnwindSafe for BinomialExtensionField<F, D, A>

§

impl<F, const D: usize, A> Send for BinomialExtensionField<F, D, A>
where A: Send, F: Send,

§

impl<F, const D: usize, A> Sync for BinomialExtensionField<F, D, A>
where A: Sync, F: Sync,

§

impl<F, const D: usize, A> Unpin for BinomialExtensionField<F, D, A>
where A: Unpin, F: Unpin,

§

impl<F, const D: usize, A> UnwindSafe for BinomialExtensionField<F, D, A>
where A: UnwindSafe, F: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<F> BasedVectorSpace<F> for F

Source§

const DIMENSION: usize = 1

The dimension of the vector space, i.e. the number of elements in its basis.
Source§

fn as_basis_coefficients_slice(&self) -> &[F]

Fixes a basis for the algebra A and uses this to map an element of A to a slice of DIMENSION F elements. Read more
Source§

fn from_basis_coefficients_fn<Fn>(f: Fn) -> F
where Fn: FnMut(usize) -> F,

Fixes a basis for the algebra A and uses this to map DIMENSION F elements to an element of A. Similar to core:array::from_fn, the DIMENSION F elements are given by Fn(0), ..., Fn(DIMENSION - 1) called in that order. Read more
Source§

fn from_basis_coefficients_iter<I>(iter: I) -> Option<F>
where I: ExactSizeIterator<Item = F>,

Fixes a basis for the algebra A and uses this to map DIMENSION F elements to an element of A. Read more
Source§

fn flatten_to_base(vec: Vec<F>) -> Vec<F>

Convert from a vector of Self to a vector of F by flattening the basis coefficients. Read more
Source§

fn reconstitute_from_base(vec: Vec<F>) -> Vec<F>

Convert from a vector of F to a vector of Self by combining the basis coefficients. Read more
Source§

fn from_basis_coefficients_slice(slice: &[F]) -> Option<Self>

Fixes a basis for the algebra A and uses this to map DIMENSION F elements to an element of A. Read more
Source§

fn ith_basis_element(i: usize) -> Option<Self>

Given a basis for the Algebra A, return the i’th basis element. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<F> ExtensionField<F> for F
where F: Field,

Source§

type ExtensionPacking = <F as Field>::Packing

Source§

fn is_in_basefield(&self) -> bool

Determine if the given element lies in the base field.
Source§

fn as_base(&self) -> Option<F>

If the element lies in the base field project it down. Otherwise return None.
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<D> OwoColorize for D

Source§

fn fg<C>(&self) -> FgColorDisplay<'_, C, Self>
where C: Color,

Set the foreground color generically Read more
Source§

fn bg<C>(&self) -> BgColorDisplay<'_, C, Self>
where C: Color,

Set the background color generically. Read more
Source§

fn black(&self) -> FgColorDisplay<'_, Black, Self>

Change the foreground color to black
Source§

fn on_black(&self) -> BgColorDisplay<'_, Black, Self>

Change the background color to black
Source§

fn red(&self) -> FgColorDisplay<'_, Red, Self>

Change the foreground color to red
Source§

fn on_red(&self) -> BgColorDisplay<'_, Red, Self>

Change the background color to red
Source§

fn green(&self) -> FgColorDisplay<'_, Green, Self>

Change the foreground color to green
Source§

fn on_green(&self) -> BgColorDisplay<'_, Green, Self>

Change the background color to green
Source§

fn yellow(&self) -> FgColorDisplay<'_, Yellow, Self>

Change the foreground color to yellow
Source§

fn on_yellow(&self) -> BgColorDisplay<'_, Yellow, Self>

Change the background color to yellow
Source§

fn blue(&self) -> FgColorDisplay<'_, Blue, Self>

Change the foreground color to blue
Source§

fn on_blue(&self) -> BgColorDisplay<'_, Blue, Self>

Change the background color to blue
Source§

fn magenta(&self) -> FgColorDisplay<'_, Magenta, Self>

Change the foreground color to magenta
Source§

fn on_magenta(&self) -> BgColorDisplay<'_, Magenta, Self>

Change the background color to magenta
Source§

fn purple(&self) -> FgColorDisplay<'_, Magenta, Self>

Change the foreground color to purple
Source§

fn on_purple(&self) -> BgColorDisplay<'_, Magenta, Self>

Change the background color to purple
Source§

fn cyan(&self) -> FgColorDisplay<'_, Cyan, Self>

Change the foreground color to cyan
Source§

fn on_cyan(&self) -> BgColorDisplay<'_, Cyan, Self>

Change the background color to cyan
Source§

fn white(&self) -> FgColorDisplay<'_, White, Self>

Change the foreground color to white
Source§

fn on_white(&self) -> BgColorDisplay<'_, White, Self>

Change the background color to white
Source§

fn default_color(&self) -> FgColorDisplay<'_, Default, Self>

Change the foreground color to the terminal default
Source§

fn on_default_color(&self) -> BgColorDisplay<'_, Default, Self>

Change the background color to the terminal default
Source§

fn bright_black(&self) -> FgColorDisplay<'_, BrightBlack, Self>

Change the foreground color to bright black
Source§

fn on_bright_black(&self) -> BgColorDisplay<'_, BrightBlack, Self>

Change the background color to bright black
Source§

fn bright_red(&self) -> FgColorDisplay<'_, BrightRed, Self>

Change the foreground color to bright red
Source§

fn on_bright_red(&self) -> BgColorDisplay<'_, BrightRed, Self>

Change the background color to bright red
Source§

fn bright_green(&self) -> FgColorDisplay<'_, BrightGreen, Self>

Change the foreground color to bright green
Source§

fn on_bright_green(&self) -> BgColorDisplay<'_, BrightGreen, Self>

Change the background color to bright green
Source§

fn bright_yellow(&self) -> FgColorDisplay<'_, BrightYellow, Self>

Change the foreground color to bright yellow
Source§

fn on_bright_yellow(&self) -> BgColorDisplay<'_, BrightYellow, Self>

Change the background color to bright yellow
Source§

fn bright_blue(&self) -> FgColorDisplay<'_, BrightBlue, Self>

Change the foreground color to bright blue
Source§

fn on_bright_blue(&self) -> BgColorDisplay<'_, BrightBlue, Self>

Change the background color to bright blue
Source§

fn bright_magenta(&self) -> FgColorDisplay<'_, BrightMagenta, Self>

Change the foreground color to bright magenta
Source§

fn on_bright_magenta(&self) -> BgColorDisplay<'_, BrightMagenta, Self>

Change the background color to bright magenta
Source§

fn bright_purple(&self) -> FgColorDisplay<'_, BrightMagenta, Self>

Change the foreground color to bright purple
Source§

fn on_bright_purple(&self) -> BgColorDisplay<'_, BrightMagenta, Self>

Change the background color to bright purple
Source§

fn bright_cyan(&self) -> FgColorDisplay<'_, BrightCyan, Self>

Change the foreground color to bright cyan
Source§

fn on_bright_cyan(&self) -> BgColorDisplay<'_, BrightCyan, Self>

Change the background color to bright cyan
Source§

fn bright_white(&self) -> FgColorDisplay<'_, BrightWhite, Self>

Change the foreground color to bright white
Source§

fn on_bright_white(&self) -> BgColorDisplay<'_, BrightWhite, Self>

Change the background color to bright white
Source§

fn bold(&self) -> BoldDisplay<'_, Self>

Make the text bold
Source§

fn dimmed(&self) -> DimDisplay<'_, Self>

Make the text dim
Source§

fn italic(&self) -> ItalicDisplay<'_, Self>

Make the text italicized
Source§

fn underline(&self) -> UnderlineDisplay<'_, Self>

Make the text underlined
Make the text blink
Make the text blink (but fast!)
Source§

fn reversed(&self) -> ReversedDisplay<'_, Self>

Swap the foreground and background colors
Source§

fn hidden(&self) -> HiddenDisplay<'_, Self>

Hide the text
Source§

fn strikethrough(&self) -> StrikeThroughDisplay<'_, Self>

Cross out the text
Source§

fn color<Color>(&self, color: Color) -> FgDynColorDisplay<'_, Color, Self>
where Color: DynColor,

Set the foreground color at runtime. Only use if you do not know which color will be used at compile-time. If the color is constant, use either OwoColorize::fg or a color-specific method, such as OwoColorize::green, Read more
Source§

fn on_color<Color>(&self, color: Color) -> BgDynColorDisplay<'_, Color, Self>
where Color: DynColor,

Set the background color at runtime. Only use if you do not know what color to use at compile-time. If the color is constant, use either OwoColorize::bg or a color-specific method, such as OwoColorize::on_yellow, Read more
Source§

fn fg_rgb<const R: u8, const G: u8, const B: u8>( &self, ) -> FgColorDisplay<'_, CustomColor<R, G, B>, Self>

Set the foreground color to a specific RGB value.
Source§

fn bg_rgb<const R: u8, const G: u8, const B: u8>( &self, ) -> BgColorDisplay<'_, CustomColor<R, G, B>, Self>

Set the background color to a specific RGB value.
Source§

fn truecolor(&self, r: u8, g: u8, b: u8) -> FgDynColorDisplay<'_, Rgb, Self>

Sets the foreground color to an RGB value.
Source§

fn on_truecolor(&self, r: u8, g: u8, b: u8) -> BgDynColorDisplay<'_, Rgb, Self>

Sets the background color to an RGB value.
Source§

fn style(&self, style: Style) -> Styled<&Self>

Apply a runtime-determined style
Source§

impl<F> PackedField for F
where F: Field,

Source§

type Scalar = F

Source§

fn packed_powers(base: Self::Scalar) -> Powers<Self>

Construct an iterator which returns powers of base packed into packed field elements. Read more
Source§

fn packed_shifted_powers( base: Self::Scalar, start: Self::Scalar, ) -> Powers<Self>

Construct an iterator which returns powers of base multiplied by start and packed into packed field elements. Read more
Source§

fn packed_linear_combination<const N: usize>( coeffs: &[Self::Scalar], vecs: &[Self], ) -> Self

Compute a linear combination of a slice of base field elements and a slice of packed field elements. The slices must have equal length and it must be a compile time constant. Read more
Source§

impl<F> PackedFieldPow2 for F
where F: Field,

Source§

fn interleave(&self, other: F, block_len: usize) -> (F, F)

Take interpret two vectors as chunks of block_len elements. Unpack and interleave those chunks. This is best seen with an example. If we have: Read more
Source§

impl<T> PackedValue for T
where T: Packable,

Source§

const WIDTH: usize = 1

Number of scalar values packed together.
Source§

type Value = T

The scalar type that is packed into this value.
Source§

fn from_slice(slice: &[<T as PackedValue>::Value]) -> &T

Interprets a slice of scalar values as a packed value reference. Read more
Source§

fn from_slice_mut(slice: &mut [<T as PackedValue>::Value]) -> &mut T

Interprets a mutable slice of scalar values as a mutable packed value. Read more
Source§

fn from_fn<Fn>(f: Fn) -> T
where Fn: FnMut(usize) -> <T as PackedValue>::Value,

Constructs a packed value using a function to generate each element. Read more
Source§

fn as_slice(&self) -> &[<T as PackedValue>::Value]

Returns the underlying scalar values as an immutable slice.
Source§

fn as_slice_mut(&mut self) -> &mut [<T as PackedValue>::Value]

Returns the underlying scalar values as a mutable slice.
Source§

fn pack_slice(buf: &[Self::Value]) -> &[Self]

Packs a slice of scalar values into a slice of packed values. Read more
Source§

fn pack_slice_with_suffix(buf: &[Self::Value]) -> (&[Self], &[Self::Value])

Packs a slice into packed values and returns the packed portion and any remaining suffix.
Source§

fn pack_slice_mut(buf: &mut [Self::Value]) -> &mut [Self]

Converts a mutable slice of scalar values into a mutable slice of packed values. Read more
Source§

fn pack_maybe_uninit_slice_mut( buf: &mut [MaybeUninit<Self::Value>], ) -> &mut [MaybeUninit<Self>]

Converts a mutable slice of possibly uninitialized scalar values into a mutable slice of possibly uninitialized packed values. Read more
Source§

fn pack_slice_with_suffix_mut( buf: &mut [Self::Value], ) -> (&mut [Self], &mut [Self::Value])

Converts a mutable slice of scalar values into a pair: Read more
Source§

fn pack_maybe_uninit_slice_with_suffix_mut( buf: &mut [MaybeUninit<Self::Value>], ) -> (&mut [MaybeUninit<Self>], &mut [MaybeUninit<Self::Value>])

Converts a mutable slice of possibly uninitialized scalar values into a pair: Read more
Source§

fn unpack_slice(buf: &[Self]) -> &[Self::Value]

Reinterprets a slice of packed values as a flat slice of scalar values. Read more
Source§

fn extract(&self, lane: usize) -> Self::Value

Extract the scalar value at the given SIMD lane. Read more
Source§

fn unpack_into<const N: usize>( packed: &[Self; N], rows: &mut [[Self::Value; N]], )

Unpack N packed values into WIDTH rows of N scalars. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<R> Algebra<R> for R

Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

Source§

impl<T, Rhs, Output> GroupOps<Rhs, Output> for T
where T: Add<Rhs, Output = Output> + Sub<Rhs, Output = Output> + AddAssign<Rhs> + SubAssign<Rhs>,

Source§

impl<T, Rhs, Output> ScalarMul<Rhs, Output> for T
where T: Mul<Rhs, Output = Output> + MulAssign<Rhs>,