Enum miden_core::AdviceInjector
source · pub enum AdviceInjector {
MerkleNodeMerge,
MerkleNodeToStack,
MapValueToStack {
include_len: bool,
key_offset: usize,
},
DivU64,
Ext2Inv,
Ext2Intt,
SmtGet,
MemToMap,
HdwordToMap {
domain: Felt,
},
}
Expand description
Defines a set of actions which can be initiated from the VM to inject new data into the advice provider.
These actions can affect all 3 components of the advice provider: Merkle store, advice stack, and advice map.
All actions, except for MerkleNodeMerge
and Ext2Inv
, can be invoked directly from Miden
assembly via dedicated instructions.
Variants§
MerkleNodeMerge
Creates a new Merkle tree in the advice provider by combining Merkle trees with the
specified roots. The root of the new tree is defined as Hash(LEFT_ROOT, RIGHT_ROOT)
.
Inputs: Operand stack: [RIGHT_ROOT, LEFT_ROOT, …] Merkle store: {RIGHT_ROOT, LEFT_ROOT}
Outputs: Operand stack: [RIGHT_ROOT, LEFT_ROOT, …] Merkle store: {RIGHT_ROOT, LEFT_ROOT, hash(LEFT_ROOT, RIGHT_ROOT)}
After the operation, both the original trees and the new tree remains in the advice provider (i.e., the input trees are not removed).
MerkleNodeToStack
Pushes a node of the Merkle tree specified by the values on the top of the operand stack onto the advice stack.
Inputs: Operand stack: [depth, index, TREE_ROOT, …] Advice stack: […] Merkle store: {TREE_ROOT<-NODE}
Outputs: Operand stack: [depth, index, TREE_ROOT, …] Advice stack: [NODE, …] Merkle store: {TREE_ROOT<-NODE}
MapValueToStack
Pushes a list of field elements onto the advice stack. The list is looked up in the advice
map using the specified word from the operand stack as the key. If include_len
is set to
true, the number of elements in the value is also pushed onto the advice stack.
Inputs: Operand stack: […, KEY, …] Advice stack: […] Advice map: {KEY: values}
Outputs: Operand stack: […, KEY, …] Advice stack: [values_len?, values, …] Advice map: {KEY: values}
The key_offset
value specifies the location of the KEY
on the stack. For example,
offset value of 0 indicates that the top word on the stack should be used as the key, the
offset value of 4, indicates that the second word on the stack should be used as the key
etc.
The valid values of key_offset
are 0 through 12 (inclusive).
DivU64
Pushes the result of u64 division (both the quotient and the remainder) onto the advice stack.
Inputs: Operand stack: [b1, b0, a1, a0, …] Advice stack: […]
Outputs: Operand stack: [b1, b0, a1, a0, …] Advice stack: [q0, q1, r0, r1, …]
Where (a0, a1) and (b0, b1) are the 32-bit limbs of the dividend and the divisor respectively (with a0 representing the 32 lest significant bits and a1 representing the 32 most significant bits). Similarly, (q0, q1) and (r0, r1) represent the quotient and the remainder respectively.
Ext2Inv
Given an element in a quadratic extension field on the top of the stack (i.e., a0, b1), computes its multiplicative inverse and push the result onto the advice stack.
Inputs: Operand stack: [a1, a0, …] Advice stack: […]
Outputs: Operand stack: [a1, a0, …] Advice stack: [b0, b1…]
Where (b0, b1) is the multiplicative inverse of the extension field element (a0, a1) at the top of the stack.
Ext2Intt
Given evaluations of a polynomial over some specified domain, interpolates the evaluations into a polynomial in coefficient form and pushes the result into the advice stack.
The interpolation is performed using the iNTT algorithm. The evaluations are expected to be in the quadratic extension.
Inputs: Operand stack: [output_size, input_size, input_start_ptr, …] Advice stack: […]
Outputs: Operand stack: [output_size, input_size, input_start_ptr, …] Advice stack: [coefficients…]
input_size
is the number of evaluations (each evaluation is 2 base field elements). Must be a power of 2 and greater 1.output_size
is the number of coefficients in the interpolated polynomial (each coefficient is 2 base field elements). Must be smaller than or equal to the number of input evaluations.input_start_ptr
is the memory address of the first evaluation.coefficients
are the coefficients of the interpolated polynomial such that lowest degree coefficients are located at the top of the advice stack.
SmtGet
Pushes values onto the advice stack which are required for successful retrieval of a value from a Sparse Merkle Tree data structure.
The Sparse Merkle Tree is tiered, meaning it will have leaf depths in {16, 32, 48, 64}
.
The depth flags define the tier on which the leaf is located.
Inputs: Operand stack: [KEY, ROOT, …] Advice stack: […]
Outputs: Operand stack: [KEY, ROOT, …] Advice stack: [f0, f1, K, V, f2]
Where:
- f0 is a boolean flag set to
1
if the depth is16
or48
. - f1 is a boolean flag set to
1
if the depth is16
or32
. - K is the remaining key word; will be zeroed if the tree don’t contain a mapped value for the key.
- V is the value word; will be zeroed if the tree don’t contain a mapped value for the key.
- f2 is a boolean flag set to
1
if a remaining key is not zero.
MemToMap
Reads words from memory at the specified range and inserts them into the advice map under
the key KEY
located at the top of the stack.
Inputs: Operand stack: [KEY, start_addr, end_addr, …] Advice map: {…}
Outputs: Operand stack: [KEY, start_addr, end_addr, …] Advice map: {KEY: values}
Where values
are the elements located in memory[start_addr..end_addr].
HdwordToMap
Reads two word from the operand stack and inserts them into the advice map under the key defined by the hash of these words.
Inputs: Operand stack: [B, A, …] Advice map: {…}
Outputs: Operand stack: [B, A, …] Advice map: {KEY: [a0, a1, a2, a3, b0, b1, b2, b3]}
Where KEY is computed as hash(A || B, domain), where domain is provided via the immediate value.
Trait Implementations§
source§impl Clone for AdviceInjector
impl Clone for AdviceInjector
source§fn clone(&self) -> AdviceInjector
fn clone(&self) -> AdviceInjector
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for AdviceInjector
impl Debug for AdviceInjector
source§impl Display for AdviceInjector
impl Display for AdviceInjector
source§impl PartialEq<AdviceInjector> for AdviceInjector
impl PartialEq<AdviceInjector> for AdviceInjector
source§fn eq(&self, other: &AdviceInjector) -> bool
fn eq(&self, other: &AdviceInjector) -> bool
self
and other
values to be equal, and is used
by ==
.